自动控制原理胡寿松第四版课后答案解析

发布时间:2019-05-07 15:32:02   来源:文档文库   
字号:

13

系统的工作原理为当流出增加时液位降低浮球降落控制器通过移动气动阀 开度流入量增加液位开始上当流入量和流出量相等时达到平衡当流出量减小时 统的变化过程则相反。



希望液位



流出量



高度 液位高度

控制器 气动阀 水箱

流入量

浮球

图一

14

1 非线性系统

2 非线性时变系统

3 线性定常系统

4 线性定常系统

5 线性时变系统

6 线性定常系统

2-1 解:

显然,弹簧力为 kx(t ) ,根据牛顿第二运动定律有:



F (t ) kx(t) = m

移项整理,得机械系统的微分方程为:



d 2 x(t )

dt 2



m d x(t ) + kx(t ) = F (t )

dt 2

对上述方程中各项求拉氏变换得:

ms 2 X (s) + kX (s) = F (s)



所以,机械系统的传递函数为:

G(s) =



X (s) =

F (s)



1

ms 2 + k



2-2 解一:



由图易得:



i1 (t )R1 = u1 (t ) u2 (t )

uc (t ) + i1 (t )R2 = u2 (t )

duc (t )



i1 (t ) = C

dt

由上述方程组可得无源网络的运动方程为:





C ( R + R ) du2 (t )



u (t ) = CR



du1 (t )



u (t )



1 2 dt



+ 2 2 + 1

dt



对上述方程中各项求拉氏变换得:

C (R1 + R2 )sU 2 (s) + U 2 (s) = CR2 sU1 (s) + U1 (s)

所以,无源网络的传递函数为:



G(s) = U 2 (s) =

U1 (s)



1 + sCR2

1 + sC(R1 + R2 )



解二(运算阻抗法或复阻抗法



U (s)



1

+ R2



1 + R Cs



2 = Cs = 2



U (s)



R + 1 + R



1 + ( R + R )Cs



1 1 2

1 Cs 2

2-5 按照上述方程的顺序从输出量开始绘制系统的结构图其绘制结果如下图所示:

依次消掉上述方程中的中间变量 X 1 , X 2 , X 3 , 可得系统传递函数为:



C(s) =

R(s)



G1 (s)G2 (s)G3 (s)G4 (s)

1 + G2 (s)G3 (s)G6 (s) + G3 (s)G4 (s)G5 (s) + G1 (s)G2 (s)G3 (s)G4 (s)[G7 (s) G8 (s)]



2-6 解:



G1 (s) G1 (s) 组成的并联环节和 G1 (s) G1 (s) 组成的并联环节化,它们的

等效传递函数和简化结构图为:

G12 (s) = G1 (s) + G2 (s)

G34 (s) = G3 (s) G4 (s)

G12 (s), G34 (s) 组成的反馈回路简化便求得系统的闭环传递函数为:



2-7 解:



C(s) =

R(s)



G12 (s)

1 + G12 (s)G34 (s)



= G1 (s) + G2 (s)

1 + [G1 (s) + G2 (s)][G3 (s) G4 (s)]





由上图可列方程组:



[E (s)G1 (s) C (s)H 2 (s)]G2 (s) = C (s)



R(s) H1



(s) C (s)

G2 (s)



= E (s)



联列上述两个方程,消掉 E (s) ,得传递函数为:



C(s) =

R(s)



G1 (s)G2 (s)

1 + H1 (s)G1 (s) + H 2 (s)G2 (s)



联列上述两个方程,消掉 C (s) ,得传递函数为:



E(s) =

R(s)



1 + H 2 (s)G2 (s)

1 + H1 (s)G1 (s) + H 2 (s)G2 (s)



2-8 解:



将①反馈回路简化,其等效传递函数和简化图为:

0.4

G (s) = 2s + 1 =

1 + 0.4 * 0.5

2s + 1



1

5s + 3



将②反馈回路简化,其等效传递函数和简化图为:

1



G (s) = s + 0.3s + 1 =



5s + 3

2



1 + 0.4



5s + 4.5s



+ 5.9s + 3.4



(s + 0.3s + 1)(5s + 3)





将③反馈回路简化便求得系统的闭环传递函数为:

0.7 * (5s + 3)

Θ o (s) = 5s 3 + 4.5s 2 + 5.9s + 3.4 =



3.5s + 2.1



Θi (s)



1 + 0.7 * Ks(5s + 3)



5s 3



+ (4.5 + 3.5K )s 2



+ (5.9 + 2.1K )s + 3.4



5s

3-3 解:该二阶系统的最大超调量:



σ p = e



ζπ /



1ζ 2



*100%





σ p



= 5% 时,可解上述方程得:



ζ = 0.69



σ p



= 5% 时,该二阶系统的过渡时间为:





t s



3

ζwn





所以该二阶系统的无阻尼自振角频率 wn

3-4 解:



3

ζt s



= 3

0.69 * 2



= 2.17



由上可得系统的传递函数:

10 * (1 + Ks)



C (s) =

R(s)



s(s + 2)

1 + 10 * (1 + Ks)

s(s + 2)



== 10 * (Ks + 1)

s + 2 * (1 + 5K )s + 10





所以 wn =



10 ζwn = 1 + 5K





ζ



= 0.5 时, K 0.116





K 0.116 ζ



= 0.5



统单位阶跃响应的超调量和过渡过程时间分别为:



σ p = e



ζπ /



1ζ 2



*100% = e



0.5*3.14 /



10.52



*100% 16.3%



ts =



3

ζwn



= 3

0.5 *



1.9

10



(1 + Ks ) 相当于加入了一个比例微分环节将使系统的阻尼比增大可以有效

地减小原系统的阶跃响应的超调量同时由于微分的作用使系统阶跃响应的速(即变



化率)提高了,从而缩短了过渡时间:总之,加入 (1 + Ks ) 后,系统响应性能得到改善。

3-5 解:



由上图可得该控制系统的传递函数:

C(s) =



10K1



R(s)

二阶系统的标准形式为:

C (s)

R(s)



s 2 + (10τ + 1)s + 10K

w 2

= n

s 2 + 2ζw s + w2



n n

所以

n = 10K1

2ζwn = 10τ + 1



σ = eζπ /

π



1ζ 2



*100%



t p =

wn



1 ζ 2



σ p = 9.5%

t p = 0.5

可得

ζ = 0.6



wn = 10K1



ζ = 0.6



wn = 7.85



2ζwn = 10τ + 1



wn = 7.85



可得:



K1 = 6.16

τ = 0.84



t s



3

ζwn



= 0.64

3-6 解:⑴ 劳斯表为:

为劳斯表首列系数符号变号 2 所以系统不稳定。

列出劳斯为:

为劳斯表首列系数全大于零,所以系统稳定。

列出劳斯为:

因为劳斯表首列系数符号变号 2 ,所以系统不稳定。

3-7 解:统的闭环系统传递函数:

K (s +1)



C (s) =

R(s)

=



s(2s +1)(Ts +1) =

1 + K (s +1)

s(2s +1)(Ts +1)

K (s +1)



K (s +1)

s(2s +1)(Ts +1) + K (s +1)



2Ts3 + (T + 2)s 2 + (K +1)s + K

列出劳斯表为:

s3 2T K +1

s2 T + 2 K

s1 (K +1)(T + 2) 2KT T + 2

s0 K





T > 0 T + 2 > 0 (K + 1)(T + 2) 2KT T + 2



> 0 K > 0



T > 0



K > 0 (K + 1)(T + 2) 2KT > 0



(K +1)(T + 2) 2KT = (T + 2) + KT + 2K 2KT

= (T + 2) KT + 2K = (T + 2) K (T 2) > 0

K (T 2) < (T + 2)

3-9 解:



由上图可得闭环系统传递函数:

C (s) =



KK2 K3



R(s) (1 + KK K a)s2 KK K bs KK K

代入已知数据,得二阶系统特征方程:

(1 + 0.1K )s2 0.1Ks K = 0



列出劳斯表为:



s2 1 + 0.1K K

s1 0.1K

s0 K



可见,只要放大器



10 < K < 0 ,系统就是稳定的。



3-12 解:系统的稳态误差为:



ess



= lim e(t ) = lim sE (s) = lim s



R(s)



t



s0



s 0 1 + G0 (s)





G0 (s) =



10

s(0.1s + 1)(0.5s + 1)



系统的静位置误差系数:



K = lim G



(s) = lim 10 =



p s 0 0



s 0 s(0.1s + 1)(0.5s + 1)



系统的静态速度误差系数:



K = lim sG



(s) = lim



10s



= 10



v s 0 0



s 0 s(0.1s + 1)(0.5s + 1)



系统的静态加速度误差系数:



K = lim s 2 G



(s) = lim



10s 2

= 0



a s0 0



s0 s(0.1s + 1)(0.5s + 1)



r (t ) = 1(t ) 时, R(s) = 1

s



ess



= lim s



* 1 = 0



r (t ) = 4t 时, R(s) =



s0 10 s

1 +

s(0.1s + 1)(0.5s + 1)

4



s 2

e = lim s



* 4 = 0.4



ss s 0 s 2



r (t ) = t 2 时, R(s) =



1 + 10

s(0.1s + 1)(0.5s + 1)

2

s 3



ess



= lim

s 0

1 +



s * 2 =

10 s 3

s(0.1s + 1)(0.5s + 1)



r(t) = 1(t) + 4t + t 2 时, R(s) = 1 + 4 + 2

s s 2 s 3



3-14 解:



ess = 0 + 0.4 + =



由于单位斜坡输入下系统稳态误差为常值=2所以系统为 I 型系统



设开环传递函数 G(s) =



K

s(s2 + as + b)



K = 0.5 b





闭环传递函数



φ(s) = G(s) = K

1 + G(s) s3 + as2 + bs + K



Q s = 1 ± j 是系统闭环极点,因此



s3 + as2 + bs + K = (s + c)(s2 + 2s + 2) = s3 + (2 + c)s2 + (2c + 2)s + 2c



K = 0.5b

K = 2c

b = 2c + 2

a = 2 + c



K = 2

a = 3

b = 4

c = 1





所以 G(s) =



2

s(s2 + 3s + 4)





4-1



jω [s]



jω [s]





k →∞



k = 0

×



k →∞



k = 0

0×



σ k = 0

×



k →∞



k →∞



k = 0 σ

0×



(a) (b)

jω [ s ]



jω [s]



σ

× × 0 ×



σ

× 0×

(c) (d)

4-2

j ω [ s ]



×

p 3 = 1



0 ××



p 1 = 0 σ

p 2 = 0





p1 = 0,



p2 = 0,



p3 = 1



1. 实轴上根轨迹 (, 1) (0, 0)

1



2. n m = 3

3 条根迹趋向无穷远处的渐近线相角为



ϕ 180°(2q + 1) = ±60°,180°

a 3



(q = 0,1)



渐近线与实轴的交点为

n m

pi zi



i =1



j =1 0 0 1 1



σ a =

3. 系统的征方程为



n m



= =

3 3





1+G(s) = 1 +



K = 0

s2 (s +1)



K = s2 (s +1) = s3 s2



dK = 3s2 2s = 0

ds



s(3s + 2) = 0



s1 = 0



(舍



s2 = 0.667





4. s = jω



代入特征方程



1+G(s) = 1 +



K = 0

s2 (s +1)



s2 (s +1) + K =0

( jω )2 ( jω +1) + K =0

ω 2 ( jω +1) + K =0

K ω 2 jω =0

K ω 2 =0

ω = 0



ω=0



(舍去)



与虚轴没有交点,即只有根轨迹上的起点,也即开环极点



p1,2 = 0



在虚轴上。



2





5-1



G(s) =



5

0.25s +1



G( jω ) =



5

0.25 jω +1





A(ω ) =



5 (0.25ω )2 +1



ϕ(ω) = arctan(0.25ω)





输入 r(t) = 5 cos(4t 30°) = 5 sin(4t + 60°)



ω=4





A(4) =



5

(0.25 * 4)2 +1



= 2.5 2



ϕ(4) = arctan(0.25 * 4) = 45°



系统的稳态输出为

c(t ) = A(4) * 5 cos[4t 30° + ϕ(4)]

= 2.5 2 * 5 cos(4t 30° 45°)

= 17.68 cos(4t 75°) = 17.68 sin(4t +15°)

sin α = cos(90° α ) = cos(α 90°) = cos(α + 270°)



5-3



或者,



c(t ) = A(4) * 5 sin[4t + 60° + ϕ(4)]

= 2.5 2 * 5 sin(4t + 60° 45°)

= 17.68 sin(4t +15°)

1 1



2



G(s) =



(1 + s)(1 + 2s)



G( jω ) =



(1 + jω )(1 + j 2ω )





A(ω ) =



1

(1 + ω 2 )(1 + 4ω 2 )



ϕ(ω) = arctan ω arctan 2ω



ϕ(ω) = arctan ω arctan 2ω = 90° arctan ω + arctan 2ω = 90°



ω = 1/(2ω)



ω 2 = 1/ 2



A(ω ) =



1 =

(1 +1 / 2)(1 + 4 *1/ 2)



2 = 0.47

3



与虚轴的交点为(0-j0.47



jY(ω)

0 ω =

-j0.47



ω = 0



1

X (ω)

ω

1





3 G(s) =



1

s(1 + s)(1 + 2s)



G( jω ) =



1

jω (1 + jω )(1 + j2ω )





A(ω ) =

ω



1

(1 + ω 2 )(1 + 4ω 2 )



ϕ(ω) = 90° arctan ω arctan 2ω



ϕ(ω) = 90° arctan ω arctan 2ω = 180° arctan ω + arctan 2ω = 90°



ω = 1/(2ω)



ω 2 = 1/ 2



A(ω ) =



1

1/2 (1 +1/ 2)(1 + 4 *1/ 2)



= 2 = 0.67

3



与实轴的交点为(-0.67-j0



-0.67

0

ω = 0.707

ω

ω = 0



jY (ω)

ω =

X (ω)





4 G(s) =



1

s2 (1 + s)(1 + 2s)



G( jω ) =



1

( jω )2 (1 + jω )(1 + j 2ω )





A(ω ) =

ω 2



1

(1 + ω 2 )(1 + 4ω 2 )



ϕ(ω ) = 180° arctan ω arctan 2ω



ϕ(ω) = 180° arctan ω arctan 2ω = 270° arctan ω + arctan 2ω = 90°



ω = 1/(2ω)



ω 2 = 1/ 2



A(ω ) =



1 = 2 (1/ 2) (1 +1/ 2)(1 + 4 *1/ 2) 3



2 = 0.94



与虚轴的交点为(0j0.94



ω = 0.707

ω = 0 ω



0.94

0



jY(ω)

ω =

X (ω)

2



5-4

2ω1 = 0.5 ω2 = 1 k = 1 υ = 0

L (ω ) ( d B )



0

0.01

-20dB



0.1



0.5



-20dB /dec

ω

1 10

-40dB /dec



-40dB

3ω1 = 0.5 ω2 = 1 k = 1 υ = 1



L (ω ) ( d B )



-20dB /dec



20dB -40dB /dec

ω

0



0.01



0.1



0.5



1 10





-20dB

-40dB



-60dB /dec



4ω1 = 0.5 ω2 = 1 k = 1 υ = 2

L (ω )(d B )



60dB



-40dB /dec



40dB

20dB -60dB /dec

ω

0



0.01



0.1



0.5



1 10





-20dB

-40dB



-80dB /dec





5-6

G(s) =



1

s 1



是一个非最小相位系统



3





G( jω ) = 1 =



1 (1 jω ) =



1 e j ( 180o +arctgω )



jω 1 1 + ω 2



1 + ω 2



G(s) =



1

s +1



是一个最小相位系统



G( jω ) = 1 =



1 (1 jω ) =



1 e jarctgω



jω +1 1 + ω 2



1 + ω 2



5-8(a)

ω = 0



ω =

-1 0



X (ω )



ω = 0 +

系统开环传递函数有一极点在 s 面的原点处因此乃氏回线中半径为无穷小量ε 的半圆弧 对应的映射曲线是一个半径为无穷大的圆弧:

ω 0 0+ θ :-90° 0°→ 90°; ϕ(ω) :+90°→ 0°→ 90°

N=P-Z Z=P-N=0-(-2)=2

闭环系统有 2 个极点在半平面,所以闭环系统不稳定

b

jY (ω )



ω = 0

ω = 0+



ω =

-1 0



X (ω )



4



系统开环传递函数有 2 个极点在 s 平面的原点处因此乃氏回线中半径为无穷小量ε 的半圆

弧对应的映射曲线是一个半径为无穷大的圆弧:

ω 0 0+ θ :-90° 0°→ 90°; ϕ(ω) :+180°→ 0°→ 180°

N=P-Z Z=P-N=0-0=0

闭环系统有 0 个极点在半平面,所以闭环系统稳定



5-10



K K 2.28K



1



G(s)H (s) = =

Ts +1

ϕ(ω)(°)



1

2.28



s +1



=

s + 2.28



ω1 = 2.28

0°

ω



90°



ϕ (ω )





G s H s = K



1 = K



1 = 2.28K



2



( ) ( )

ϕ (ω )(°)



s Ts +1



s 1

2.28



s +1



s(s + 2.28)



90°



ω1 = 2.28

ω





180°



ϕ (ω )





K τ s +1



1

K 0.5



s +1



4K (s + 0.5)



3



G(s)H (s) = =

s Ts +1 s 1



=

s (s + 2)



2 2 2

s +1

2

L (ω )( d B )

-40dB /dec

-20dB /dec

a ω



b 0 0.5



1 2

-40dB /dec



5





20 lg 1



= a 20 lg K + 20 lg 1



= 40 lg 1



20 lg K = 20 lg 1



0.5

20 lg(K )1 = 20 lg 2



0.5 0.5

K = 1/ 2 = 0.5



0.5



G(s)H (s) = 4K (s + 0.5) = 2(s + 0.5)



s2 (s + 2)



s2 (s + 2)





90°



ϕ(ω)(°)



ω1 = 0.5



ω2 = 2

ω





180°



ϕ (ω )





5-11



ω = 0



jY (ω)





ω = +

0 ω = −∞

(-1,j0)



X (ω)



ω

ω = 0+



G(s)H (s) =



K

s(s +1)(3s +1)



G( jω )H ( jω ) =



K

jω ( jω +1)(3 jω +1)



ϕ(ω ) = 90° arctan ω arctan 3ω = 180° arctan ω + arctan 3ω = 90°



ω = 1/(3ω)



ω 2 = 1/ 3



A(ω ) =



K

1 /3 (1 +1 / 3)(1 + 9 *1/ 3)



= 3 K = 1

4



Kc = 4/3 = 1.33

6



6-2 (1)

6 ω 2

G(s) = = n



s(s2 + 4s + 6)



s(s2 + 2ξω s + ω 2 )





ω 2 = 6



ω = 6 =2.45, 2ξω =4 ξ =



4 = 2



= 0.816



n n n



2ωn 6





K = 1



所以ωc = 1 20lgK = 0





2ξω / ω

ϕ (ω ) = 90° arctg c n



2 * 0.816 *1/ 2.45

= 90° arctg



c 1 ω 2 / ω 2



1 1/ 2.452



c n

= 90° arctg 2 * 0.816 *1 / 2.45 = 90° arctg 0.666 = 90° arctg 0.7995



1 1 / 2.452



0.833



= 90° 38.64° = 128.64°

γ = 180° + ϕ (ωc ) = 180° 128.64° = 51.36°

L(ω )(dB)



50

40

30

20

10

0

-10

-20

-30

-40



0.01



-20dB /dec

0.1



ωn

1 2.45



ω

10

-60dB /dec





(2)



ω1 = 1,



ω2 =1/0.2=5





2ξω / ω

ϕ (ω ) = 90° arctg c n



ω ω

+ arctg c arctg c



c 1 ω 2 / ω 2 ω



ω



c n



1 2



= 128.64° + arctg 1 arctg 1 = 128.64° + 45° 11.31° = 94.95°

γ = 180° + ϕ (ωc ) = 180° 94.95° = 85.05°

1



课后答案网

L(ω) (dB )



50

40

30

20

10

0

-10

-20



0.01



-20dB /dec

0.1



ωn

1 2.45



20dB /dec

G c

ω

5 10



-30

-40



-40dB /dec -60dB /dec

-60dB /dec





6-5 (1)



G(s) =



10

s(0.5s +1)(0.1s +1)





ω = 1, 20 lg K =20lg10=20dB



ω1 = 1/ 0.5 = 2,



ω2 = 1 / 0.1 = 10





ω1 = 2



时, L(ω1 ) = 20 20(lg 2 lg1) = 20lg10 20 lg 2 = 20lg5 = 14dB





ω2 = 10



时, L(ω2 ) = 14 40(lg10 lg 2) = 13.96dB



所以ω1 < ωc < ω2

L(ω1 ) = 40(lg ωc lg 2) = 40(lg ωc / 2) = 14dB

ωc = 4.48

ϕ (ωc ) = 90° arctg 0.5ωc arctg 0.1ωc = 90° arctg 2.24 arctg 0.448

= 90° 65.94° 24.13° = 180.07°

γ = 180° + ϕ (ωc ) = 180° 180.07° = 0.07°

L (ω )(dB)



50

40

30

20

10

0

-10

-20

-30

-40



0.1



-20dB /dec

1 2



-40dB /dec

ω c 10



-60dB /dec



ω

100



2





(2)



G(s)Gc (s) =



10(0.33s +1)

s(0.5s +1)(0.1s +1)(0.033s +1)



ω = 1, 20 lg K =20lg10=20dB



ω1 = 1 / 0.5 = 2,



ω2 = 1/ 0.33 = 3,



ω3 = 1 / 0.1 = 10,



ω4 = 1/ 0.033 = 30





ω2 = 3



时, L(ω1 ) L(ω2 ) = 40(lg ω2 lg ω1 ) 14 L(ω2 ) = 40(lg 4.35 lg 2)



L(ω2 ) = 7dB

L(ω3 = 10) L(ω2 = 3) = 20(lg ω3 lg ω2 ) = 3.37dB

ω2 < ωc 2 < ω3

L(ω2 ) = 20(lg ωc 2 lg ω2 ) = 20(lg ωc 2 / 3) = 7dB

ωc 2 = 6.72

ϕ (ωc ) = 90° arctg 0.5ωc 2 arctg 0.1ωc 2 + arctg 0.33ωc 2 arctg 0.033ωc 2

= 90° arctg 3.36 arctg 0.672 + arctg 2.22 arctg 0.222

= 90° 73.43° 33.90°+ 65.75°12.52° = 144.1°

γ 2 = 180° + ϕ (ωc 2 ) = 180° 144.1° = 35.9°

L(ω )(dB)



50

40

30 -20dB /dec

20

10

0



-40dB /dec



ωc 2



20dB /dec

G c

10 ω



-10

-20



0.1



1 2 3



ωc1



30

G cG



100



-30

-40



-20dB /dec



-40dB /dec -60dB /dec



-60dB /dec

校正环节为相位超前校正校正后系统的相角裕量增加系统又不稳定变为稳定且有一定

的稳定裕度降低系统响应的超调量剪切频率增加系统快速性提高但是高频段增 高,系统抑制噪声能力下降。

3

本文来源:https://www.2haoxitong.net/k/doc/7a075093df80d4d8d15abe23482fb4daa58d1db8.html

《自动控制原理胡寿松第四版课后答案解析.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式