峰值检测电路分析

发布时间:2018-07-01 12:41:19   来源:文档文库   
字号:

峰值检测电路(二)

http://hi.baidu.com/meijiangmiantk/blog/item/7c6b84debd949d1a49540397.html

1.基本的峰值检测电路

本实验以峰值检测器为例, 说明可利用反馈环改进非线性的方法。

峰值检测器是用来检测交流电压峰值的电路, 最简单的峰值检测器依据半波整流原理构成电路。如实图4.1所示, 交流电源在正半周的一段时间内, 通过二极管对电容充电, 使电容上的电压逐渐趋近于峰值电压。只要 RC 足够大,可以认为其输出的直流电压数值上十分接近于交流电压的峰值。

4.1 简单峰值检测电路

 

这种简单电路的工作过程是, 在交流电压的每一周期中, 可分为电容充电和放电两个过程。在交流电压的作用下, 在正半周的峰值附近一段时间内, 通过二极管对电容 C 充电,而在其它时段电容 C 上的电压将对电阻 R 放电。当然,当外界交流电压刚接上时,需要经历多个周期, 多次充电, 才能使输出电压接近峰值。但是, 困难在于二极管是非线性元(), 它的特性曲线如实图4.2所示。当交流电压较小时,检测得的直流电压往往偏离其峰值较多。

 

4.2 二极管特性曲线

这里的泄放电阻R,是指与 C 并联的电阻、下一级的输入电阻、二极管的反向漏电阻、以及电容及电路板的漏电等效电阻。不难想到, 放电是不能完全避免的。同时, 适当的放电也是必要的。特别是当输入电压变小时, 通过放电才能使输出电压再次对应于输入电压的峰值。实际上, 检测器的输出电压大小与峰值电压的差别与泄放电流有关。仅当泄放电流可不计时, 输出电压才可认为是输入电压的峰值。用于检测仪器中的峰值检测器要求有较高的精度。检测仪器通常 R 值很大,且允许当输入交流电压取去后可有较长的时间检波输出才恢复到零。可以用较小的电容,从而使峰值电压建立的时间较短。

本实验的目的, 在于研究如何用运算放大器改进峰值检测器, 进一步了解运算放大器之应用。

2.峰值检测电路的改进

 

为了避免次级输入电阻的影响, 可在检测器的输出端加一级跟随器(高输入阻抗)作为隔离级(实图4.3)

4.3 峰值检测器改进电路(一)

也可以按需要加一可调的泄放电阻。如果允许电路有很长的放电时间, 也可以不用外加泄放电阻。这种电路可以有效地隔离次级的影响, 且跟随器的输出电压(Vo)可视为与电容上的电压相等。

电路中的二极管, 仅在 Vi-Vo > 0 时才导通, 使电容C充电。这时, 二极管上的电压为(Vi-Vo)。为使在(Vi-Vo)很小时也能有足够的充电速度, 可将(Vi-Vo)经过放大, 再作用于二极管。按照这一设想, 可在检测器前加一级比较放大器(实图4.4)

 

4.4 峰值检测器改进电路(二)

在分析时常认为运算放大器失偏电压为理想值 0V。比较放大器是开环的差动放大器,它可以有很高的增益, 只要 Vi 略大于 Vo, 就可以输出很大的电压驱动 D1 对电容充电。例如运算放大器的增益为 100dB量级, 只需 Vi Vo 0.02mV, 就可以输出 2V 的正向电压,显然, 加速了电容的充电过程,直至使 Vo 等于 Vi 的峰值为止。实际工作中, 决定 Vo Vi 有差别的一个重要因素, 将是放大器输入端的失调电压。当然, 放大器也应有足够的带宽,以适应要求检测的交流电压的频率范围。

 

Vi-Vo < 0 , 比较放大器的输出电压接近于负电源电压, 使 D1 上有较大的反向电压, D1 就会有一定的反向泄漏电流。为抑制 D1 的反向电流, 应使 D1 的正极在反向时的电压, 只略低于 Vo。为此, 在比较放大器(A2) D1 之间增设二极管 D2 和电阻 R2 (实图4.5)

 

4.5 峰值检测器改进电路(三) 

Vi > Vo , A2 输出较大的正向电压, 使 D2 D1 导通对电容充电。在 Vi < Vo , A2 输出的反向电压使 D2 关断。这时, D2 的负极(D1 的正极)通过 R2 联于 A1 的输出端, 使 R2 一端的电压(对地) Vo。如图所示, 流过 D2 的反向电流通过 R2, 因而使 D2 的负极(D1 的正极)上和电容上的电压得以保持。

 

通常 R2 为数百kW的电阻, 例如在实图4.5 R2 560kW。若 D2 的反向电流为 0.2mA, R2 上的电压为 0.11V, D1 上的反向电压为 0.11V。由此可见, D2 R2 有效的抑制了D1的反向电流, 其作用相当于增大了检测电路的泄放电阻。

 

还需注意, D2 还有极间电容 C2, 它与 R2 组成阻容耦合电路。以上的分析略去了 C2 的作用,实际上是假定输入信号的频率满足:W << 1/(R2C2) (4.1)

 

因此, 除了选用级间电容较小的二极管之外, 还应参照上式选择 R2

 

实图4.5是改进的峰值检测器的原理图。该电路还有一个实际问题。在输入信号的每周期的大部分时间中处于 Vi < Vo 的状态, 因而 A2 输出端的电压几乎等于负电源电压, A2 的中间级和输出级的某些管子, 必处于深饱和和深截止状态。仅当 Vi 在峰值附近的一小段时间中, A2 才可能在线性区中, A2 的某些管子应从深饱和状态(或深截止状态)转向线性区(放大区)中的状态。管子的这种状态的转换需要经历一段时间才能完成。这种效应限制了输入信号频率, 亦即限制了检测速度。

 

为了改善电路的速度, 用非线性元() D3, 将比较放大器组成非线性反馈的放大器(实图4.6a)。在 Vi > Vo 时,Vo2 高于 Vo, D3 处于反偏置状态(不导通)A2 仍可视为无反馈的高增益电路; Vi < Vo 时,Vo2 低于 Vo, D3 处于正偏置状态(导通)呈现为低阻抗, A2 可视为有强反馈的低增益放大器。若 D3 的正向等效电阻为 RD3, rD3 << R3 , 只要 R3 充分大,保持 Vo 值变化较小,对于输入信号来说, 该电路相当于有偏置的跟随器(实图4.6b)

4.6 提高峰值检测器充电速度的原理图

 

  rD3 可不计则输出电压为:Vo2 Vi -Vo - VD3 (4.2)

 Vo2 的最低值为 Vo2min  -2VP - VD3    (4.3)

 

式中 Vp 是输入电压 Vi 的峰值。在设计电路时, 若使 Vi 的最大峰值小于 A2 的负向摆幅之半,则 A2 就可以保持在线性区工作。当然,D3 反向电阻应尽可能大,以保证 Vo2 为正值时不致通过 D3 泄漏至 Vo

 

综上所述, 较完善的峰值检测器电路如实图4.7所示。

 

 4.7 峰值检测器改进电路(四) 

 

参数选择: 

按照上面的分析, R3 应满足: RD3 >> R3 >> rD3 (4.4)

RD3 D3 的反向等效电阻。因 rD3 常在 100W 量级, RD3 常在 1000kW 量级或更大, R3 可选为 10kW 量级。

整个电路,A2是输入缓冲,其输入端包含A1的输出反馈,用于实现比较功能“Vi高于Vo就打开下级电路”。A1是输出缓冲。

1、只要 R3 充分大,就能保持 Vo 值变化较小。

2R2用于减少D2的反相泄露电阻。

本文来源:https://www.2haoxitong.net/k/doc/83421dcea1c7aa00b52acb3a.html

《峰值检测电路分析.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式