流体力学-流体仿真介绍

发布时间:2011-05-15 16:34:45   来源:文档文库   
字号:

流体力学研究流体(气体与液体)的宏观运动与平衡,它以流体宏观模型作为基本假说。



显然,流体的运动取决于每个粒子的运动,但若求解每个粒子的运动即不可能也无必要。对于宏观问题,必须在微观与宏观之间建立一座桥梁。



流体宏观模型认为流体是由无数流体元(或称流体微团)连续地组成的(即连续介质)。所谓流体元指的是这样的小块流体:它的大小与放置在流体中的实物比较是微不足道的,但比分子的平均自由程却要大得多,它包含足够多的分子,能施行统计平均求出宏观参量,少数分子出入于流体元不会影响稳定的平均值。



另一方面,对于进行统计平均的时间也应选得足够大,使得在这段时间内,微观的性质,例如分子间的碰撞等已进行了许多次,在这段时间内进行统计平均能够得到稳定的数值。于是,从统计物理中得知,分子的物理量(质量、速度、动量和能量)经过统计平均后变成了流体元的质量,速度,压力和温度等宏观物理量,分子质量、动量和能量等输运过程,经过统计平均后表现为扩散,粘性,热传导等宏观性质。



上述微观上充分大、宏观上充分小的流体元称为流体质点,将流体运动的空间看作是由流体质点连续地无空隙地充满着的假设称为连续介质假设。应该指出,有了此假设才能把一个微观问题化成宏观问题,且数学上容易处理。实验和经验也表明在一般情况下这个假设总是成立的。



但是。在某些特殊问题中,连续介质的假设也可以不成立。例如在稀薄气体力学中,分子间的距离很大,它能和物体的特征尺度比拟,这样虽然获得稳定平均值的流体元还是存在的,但是不能将它看成一个质点。又如考虑激波内的气体运动,激波的尺寸与分子平均自由程同阶,激波内的流体只能看成分子而不能当作连续介质来处理了。



1 流体的基本性质



1.1 易流动性



流体在静止时不能承受切向应力,不管多小的切向应力,都会引起其中各流体元彼此间的相对位移,而且取消力的作用后,流体元之间并不恢复其原有位置。正是流体的这一基本特性使它能同刚体和弹性体区别开来。刚体和弹性体也是连续介质,但是刚体中质点之间的相互距离不论其上作用的外力如何将保持不变;而在弹性体中,当作用力在数值上达到某一界限时,系统中各点间的相互距离可以改变,但消除了力的作用之后,各点相互关系又恢复原有状态。相反地,流体能够有任意大的变形。因此流体在静止时只有法应力而没有切应力。流体的这个宏观性质称为易流动性。



1.2 粘性



流体在静止时虽不能承受切应力,但在运动时,对相邻两层流体间的相对运动即相对滑动速度是有抵抗的,这种抵抗力称为粘性应力,流体所具有的这种抵抗两层流体相对滑动的性质称为粘性,粘性大小依赖于流体的性质,并显著地随温度而变化。实验表明,粘性应力的大小与粘性及相对速度成正比。



当流体的粘性较小,运动的相对速度也不大时,所产生的粘性应力比起其它类型的力(如惯性力)可忽略不计。此时,我们可以近似地把流体看成是无粘性的,这样的流体称为理想流体。十分明显,理想流体对于切向变形没有任何抗拒能力。这样对于粘性而言,我们可以将流体分成理想流体和粘性流体两大类。应该强调指出,真正的理想流体在客观实际中是不存在的。它只是客观流体在某种条件下的一种近似模型。



除了粘性外,流体还有热传导及扩散等性质。



流体的宏观性质,扩散,粘性,热传导等是分子输运性质的统计平均。由于分子的不规则运动,在各层流体间将交换着质量,动量和能量,使不同流体层内的平均物理量均匀化,这种性质称为分子运动的输运性质。质量输运在宏观上表现为扩散现象,动量输运表现为粘性现象,能量输运则表现为热传导现象。



1.3 压缩性



流体质点的体积或密度在受到一定压力或温度差的条件下可以改变,这个性质称为压缩性。真实流体都是可以压缩的。它的压缩程度依赖子流体的性质及外界的条件。液体在通常的压力或温度下,压缩性很小。因此在一般情形下液体可以近似地看成是不可压缩的。



2 描写流体运动的两种方法



2.1 拉格朗日方法(随体法)



在拉格朗日方法中,注意的中心即着眼点是流体质点,确定所有流体质点的运动规律,即它们的位置随时间变化的规律。十分明显,如果知道了所有流体质点的运动规律,那么整个流体运动的状况也就清楚了。



现在我们将描写运动的观点和方法用数学式子表达出来,为此首先必须用某种数学方法区别不同的流体质点。通常利用初始时刻流体质点的坐标作为区分不同流体质点的标志。设初始时刻 t = t0 时,流体质点的坐标是 abc,它可以是曲线坐标,也可以是直角坐标,重要的是给流体质点以标号而不在于采取什么具体的方式。



我们约定采用 abc 三个数的组合来区别流体质点,不同的 abc 代表不同的质点,于是流体质点的运动规律可表为下列矢量形式:



r=r(t,a,b,c)



其中 r 是流体质点的矢径。在直角坐标系中,有分量式:



x=x(t,a,b,c)



y=y(t,a,b,c)



z=z(t,a,b,c)



变数 t abc 称为拉格朗日变数。



2.2 欧拉方法(当地法)



欧拉方法不直接考虑个别流体质点如何运动,而是用场的观点研究流体运动。它只集中注意力于那些发生在空间给定点的流动情况;对于流体质点从什么地方和如何在给定时刻达到这一点,经过这点以后又会运行到别的什么地方和怎样运行到那些地方的,这一切问题从欧拉方法观点看来并不是基本的。这样,欧拉方法是把空间某一固定点 (x, y, z) 的流体质点的速度当作时间的函数来研究的;显然,这个速度也是坐标 (x, y, z) 的函数。因此,



其分量为:



ux=ux(t,x,y,z)



uy=uy(t,x,y,z)



uz=uz(t,x,y,z)



变数 t x, y, z 称为欧拉变数。如果在上式中把 t 当作可变的,而把 x, y, z 当作常数,则对不同的 t 我们得到不同时刻经过空间中确定点的不同流体质点的速度;而如把 t 当作常数, x, y, z 当作变数,则可得到对于确定时刻空间中流体质点的速度分布。



由于上式确定的速度函数是定义在空间点上的,它们是空间点坐标 x, y, z 的函数,所以我们研究的是场,如速度场等。因此当我们采用欧拉观点描述运动时,就可以利用场论的知识。若场内函数不依赖矢径 r 则称之为均匀场,反之称之为非均匀场;若场内函数不依赖时间则称为定常场,反之称为非定常场。



描述场的几何方法是引入所谓的场线,就像静电场中引入电力线,磁场中引入磁力线一样,在流速场中可以引入流线。流线是这样规定的:



流线为流体内的一条连续的有向曲线,流线上每一点的切线方向代表流体内微粒经过该点时的速度方向。



一般情况下空间各点的流速随时间 t 变化,因此流线也是随时间变化的。由于流线分布与一定的瞬时相对应,所以在一般情况下,流线并不代表流体中微粒运动的轨迹。



只有在稳定流动中,流线不随时间变化,此时流线才表示流体中微粒实际经过的轨迹。只有此时流线才与迹线重合。



另外,由于流线的切线表示流体内微粒运动的方向,所以流线永远不会相交,因为如果流线在空间某处相交就表示流体中的微粒经过该点时同时具有两个不同的速度,这当然是不可能的。



在流体内部取一微小的封闭曲线,通过曲线上各点的流线所围成的细管就称为流管。



由于流线不会相交,因此流管内、外的流体都不具有穿过流管的速度,也就是说流管内部的流体不能流到流管外面,流管外的流体也不能流入流管内。

计算流体动力学(Computational Fluid Dynamics,简称CFD)是通过计算机数值计算和图像显示,对包含有流体流动和热传导等相关物理现象的系统所做的分析。CFD的基本思想可以归结为:把原来在时间域及空间域上连续的物理量的场,如速度场和压力场,用一系列有限个离散点上的变量值的集合来代替,通过一定的原则和方式建立起关于这些离散点上场变量之间关系的代数方程组,然后求解代数方程组获得场变量的近似值CFD可以看做是在流动基本方程(质量守恒方程飞动量守恒方程、能量守恒方程)控制下对流动的数值模拟。通过这种数值模拟,我们可以得到极其复杂问题的流场内各个位置上的基本物理量(如速度、压力、温度、浓度等)的分布,以及这些物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。还可据此算出相关的其他物理量,如旋转式流体机械的转矩、水力损失和效率等。此外,与CAD联合,还可进行结构优化设计等。CFD方法与传统的理论分析方法、实验测量方法组成了研究流体流动问题的完整体系,图1给出了表征三者之间关系的三维流体力学示意图理论分析方法的优点在于所得结果具有普遍性,各种影响因素清晰可见,是指导实验研究和验证新的数值计算方法的理论基础。但是,它往往要求对计算对象进行抽象和简化,才有可能得出理论解。对于非线性情况,只有少数流动才能给出解析结果。

实验测量方法所得到的实验结果真实可信,它是理论分析和数值方法的基础,其重要性不容低估。然而,实验往往受到模型尺寸、流场扰动、人身安全和测量精度的限制,有时可能很难通过试验力一法得到结果。此外,实验还会遇到经费投入、人力和物力的巨大耗费及周期长等许多困难。



CFD方法恰好克服了前面两种方法的弱点,在计算机上实现一个特定的计算。就好像在计算机上做一次物理实验。例如,机翼的绕流,通过计算并将其结果在屏幕上显示,就可以看到流场的各种细节:如激波的运动、强度,涡的生成与传播,流动的分离、表面的压力分布、受力大小及其随时间的变化等。数值模拟可以形象地再现流动情景,与做实验没有什么区别。



2 计算流体动力学的特点



CFD的长处是适应性强、应用面广。首先,流动问题的控制方程,般是非线性的,自变量多,计算域的几何形状和边界条件复杂,很难求得解析解,而用CFD方法则有可能找出满足工程需要的数值解;其次,可利用计算机进行各种数值试验,例如,选择不同流动参数进行物理方程中各项有效性和敏感性试验,从而进行方案比较。再者,它不受物理模型和实验模型的限制,省钱省时,有较多的灵活性,能给出详细和完整的资料,很容易模拟特殊尺寸、高温、有毒、易燃等真实条件和实验中只能接近而无法达到的理想条件。CFD也存在一定的局限性。首先,数值解法是一种离散近似的计算方法,依赖于物理上合理、数学上适用、适合于在计算机上进行计算的离散的有限数学模型,且最终结果不能提供任何形式的解析表达式,只是有限个离散点上的数值解,并有一定的计算误差;第二,它不像物理模型实验一开始就能给出流动现象并定性地描述,往往需要由原体观测或物理模型试验提供某些流动参数,并需要对建立的数学模型进行验证;第三,程序的编制及资料的收集、繁理与正确利用,在很大程度上依赖于经验与技巧。此外,因数值处理方法等原因有可能导致计算结果的不真实,例如产生数值粘性和频散等伪物理效应。当然,某些缺点或局限性可通过某种方式克服或弥补,这在本书中会有相应介绍。此外,CFD囚涉及大量数值计算,因此,常需要较高的计算机软硬件配置。



CFD有自已的原理、方法和特点,数值计算与理论分析、实验观测相互联系、相互促进,但不能完全替代,三者各有各的适用场合。在实际工作中,需要注意三者有机的结合,争取做到取长补短。



3 计算流体动力学的应用领域



近十多年来,CFD有了很大的发展,替代了经典流体力学中的一些近似计算法和图解法:过去的一些典型教学实验,如Reynolds实验,现在完全可以借助CFD手段在计算机上实现。所有涉及流体流动、热交换、分子输运等现象的问题,凡乎都可以通过计算流体力学的方法进行分析和模拟。CFD不仅作为一个研究工具,而且还作为设计工具在水利工程、土木工程、环境工程、食品工程、海洋结构工程、工业制造等领域发挥作用。典型的应用场合及相关的工程问题包括:



.水轮机、风机和泵等流体机械内部的流体流动



.飞机和航天飞机等飞行器的设计



.汽车流线外型对性能的影响



.洪水波及河口潮流计算



.风载荷对高层建筑物稳定性及结构性能的影响



.温室及室内的空气流动及环境分析



.电子元器件的冷却



.换热器性能分析及换热器片形状的选取



.河流中污染物的扩散



.汽车尾气对街道环境的污染



.食品中细菌的运移



对这些问题的处理,过去主要借助于基本的理论分析和大量的物理模型实验,而现在大多采用CFD的方式加以分析和解决,CFD技术现己发展到完全可以分析三维粘性湍流及旋涡运动等复杂问题的程度。



4 计算流体动力学的分支



经过四一十多年的发展,CFD出现了多种数值解法。这些方法之间的上要区别在于对控制方程的离散方式。根据离散的原理不同,CFD大体上可分为三个分支:



.有限差分法(Finite Difference Method,FDM)



.有限元法(Finite Element Method,FEM)



.有限体积法(Finite Volume Method,FVM)



有限差分法是应用最早、最经典的CFD方法,它将求解域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程的导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。求出差分方程组的解,就是微分方程定解问题的数值近似解。它是一种直接将微分问题变为代数问题的近似数值解法。这种方法发展较早,比较成熟,较多地用于求解双曲型和抛物型问题。在此基础上发展起来的方法有PIC(Particle-in-Cell)法、MAC(Marker-and-cell)法,以及由美籍华人学者陈景仁提出的有限分析法(Finite Analytic Method)等有限元法是20世纪80{BANNED}始应用的一种数值解法,它吸收了有限差分法中离散处理的内核,又采用了变分计算中选择逼近函数对区域进行积分的合理方法。有限元法因求解速度较有限差分法和有限体积法慢,因此应用不是特别广泛。在有限元法的基础上,英国C.A.Brebbia等提出了边界元法和混合元法等方法。



有限体积法是将计算区域划分为一系列控制体积,将待解微分方程对每一个控制体积积分得出离散方程。有限体积法的关键是在导出离散方程过程中,需要对界面上的被求函数本身及其导数的分布作出某种形式的假定,用有限体积法导出的离散方程可以保证具有守恒特性,而且离散方程系数物理意义明确,计算量相对较小。1980年,S.V.Patanker在其专著《Numerical Heat Transfer and FluidFlow》中对有限体积法作了全面的阐述。此后,该方法得到了广泛应用,是目前CFD应用最广的一种方法。当然,对这种方法的研究和扩展也在不断进行,如P.Chow提出了适用于任意多边形非结构网格的扩展有限体积法等。

9 显示和输出计算结果



通过上述求解过程得出了各计算节点上的解后,需要通过适当的手段将整个计算域上的结果表示出来。这时,我们可采用线值图、矢量图、等值线图、流线图、云图等方式对计算结果进行表示。



所谓线值图,是指在二维或二维空间上,将横坐标取为空间长度或时间历程,将纵坐标取为某一物理量,然后用光滑曲线或曲面在坐标系内绘制出某一物理量沿空间或时间的变化情况。矢量图是直接给出二维或三维空间里矢量(如速度)的方向及大小,一般用不同颜色和长度的箭头表示速度矢量。矢量图可以比较容易地让用户发现其中存在的漩涡区。等值线图是用不同颜色的线条表示相等物理量(如温度)的一条线。流线图是用不同颜色线条表示质点运动轨迹。云图是使用渲染的方式,将流场某个截面上的物理量(如压力或温度)用连续变化的颜色块表示其分布。



现在的商用CFD软件均提供了上述各表示方式。用户也可以自己编写后处理程序进行结果显示。

CFD的软件结构

为方便用户使用CFD软件处理不同类型的工程问题,一般的CFD商用软件往往将复杂的CFD过程集成,通过一定的接口,让用户快速地输入问题的有关参数。所有的商用CFD软件均包括三个基本环节:前处理、求解和后处理。与之对应的程序模块常简称前处理器、求解器、后处理器。以下简要介绍这三个程序模块。



1 前处理器



前处理器(preprocessor)用于完成前处理工作。前处理环节是向CFD软件输入所求问题的相关数据,该过程一般是借助与求解器相对应的对话框等图形界面来完成的。在前处理阶段需要用户进行以下工作:



.定义所求问题的几何计算域



.将计算域划分成多个互不重叠的子区域,形成由单元组成的网格



.对所要研究的物理和化学现象进行抽象,选择相应的控制方程



.定义流体的属性参数



.为计算域边界处的单元指定边界条件



.对于瞬态问题,指定初始条件



流动问题的解是在单元内部的节点上定义的,解的精度由网格中单元的数量所决定。一般来讲,单元越多、尺寸越小,所得到的解的精度越高,但所需要的计算机内存资源及CPU时问也相应增加。为了提高计算精度,在物理量梯度较大的区域,以及我们感兴趣的区域,往往要加密计算网格。在前处理阶段生成计算网格时,关键是要把握好计算精度与计算成本之间的平衡。



目前在使用商用CFD软件进行CFD计算时,有超过50%以上的时间花在几何区域的定义及计算网格的生成上。我们可以使用CFD软件自身的前处理器来生成几何模型,也可以借用其他商用CFDCAD/CAE软件(如PATRANANSYSI-DEASPro/ENGINEER助提供的几何模型。此外,指定流体参数的任务也是在前处理阶段进行的。



2 求解器



求解器(solver)的核心是数值求解方案。常用的数值求解方案包括有限差分、有限元、谱方法和有限体积法等。总体上讲,这些方法的求解过程大致相同,包括以下步骤:



.借助简单函数来近似待求的流动变量



.将该近似关系代入连续型的控制方程中,形成离散方程组



.求解代数方程组



各种数值求解方案的主要差别在于流动变量被近似的方式及相应的离散化过程。



3 后处理器



后处理的目的是有效地观察和分析流动计算结果。随着计算机图形功能的提高,目前的CFD软件均配备了后处理(postprocessor),提供了较为完善的后处理功能,包括:



.计算域的几何模型及网格显示



.矢量图(如速度矢量线)



.等值线图



.填充型的等值线图(云图)



XY散点图



.粒子轨迹图



.图像处理功能(平移、缩放、旋转等)



借助后处理功能,还一可动态模拟流动效果,直观地了解CFD的计算结果。

CFD网格及其生成方法概述

网格是CFD模型的几何表达形式,也是模拟与分析的载体。网格质量对CFD计算精度和计算效率有重要影响。对于复杂的CFD问题,网格生成极为耗时,且极易出错,生成网格所需时间常常大于实际CFD计算的时间。因此,有必要对网格生成方式给以足够的关注。



1 网格类型



网格(grid)分为结构网格和非结构网格两大类。结构网格即网格中节点排列有序、邻点间的关系明确,如图1所示。对一于复杂的儿何区域,结构网格是分块构造的,这就形成了块结构网格(block-structured grids)。图2是块结构网格实例。



与结构网格不同,在非结构网格(unstructured grid)中,节点的位置无法用一个固定的法则予以有序地命名。图3是非结构网格示例。这种网格虽然生成过程比较复杂,但却有着极好的适应性,尤其对具有复杂边界的流场计算问题特别有效。非结构网格一般通过专门的程序或软件来生成。

网格单元的分类



单元(cell)是构成网格的基本元素。在结构网格中,常用的ZD网格单元是四边形单元,3D网格单元是六面体单元。而在非结构网格中,常用的2D网格单元还有三角形单元,3D网格单元还有四面体单元和五面体单元,其中五面体单元还可分为棱锥形(或楔形)和金字塔形单元等。图4和图5分别示出了常用的2D3D网格单元。



3 单连域与多连域网格



网格区域(cell zone)分为单连域和多连域两类。所谓单连域是指求解区域边界线内不包含有非求解区域的情形。单连域内的任何封闭曲线都能连续地收缩至点而不越过其边界。如果在求解区域内包含有非求解区域,则称该求解区域为多连域。所有的绕流流动,都属于典型的多连域问题,如机翼的绕流,水轮机或水泵内单个叶片或一组叶片的绕流等。图2及图3均是多连域的例子。



对于绕流问题的多连域内的网格,有O型和C型两种。O型网格像一个变形的圆,一圈一圈地包围着翼型,最外层网格线上可以取来流的条件,如图6所示。C型网格则像一个变形的C字,围在翼型的外面,如图7所示。这两种网格部属于结构网格。



4 生成网格的过程



无论是结构网格还是非结构网格,都需要按下列过程生成网格:



1)均建立几何模型。几何模型是网格和边界的载体。对于二维问题,几何模型是二维面;对于三维问题,几何模型是三维实体。



2)划分网格。在所生成的几何模型土应用特定的网格类型、网格单元和网格密度对面或体进行划分,获得网格。



3)指定边界认域。为模型的每个区域指定名称和类型,为后续给定模型的物理属性、边界条件和初始条件做好准备。



生成网格的关键在上述过程中的步骤(2)。由于传统的CFD基于结构网格,因此,目前有多种针对结构网格的成熟的生成技术,而针对非结构网格的生成技术要更复杂一些。



5 生成结构网格的贴体坐标法



如果计算区域的各边界是一个与坐标轴都平行的规则区域,则可以很方便地划分该区域,快速生成均匀网格。但实际工程问题的边界不可能与各种坐标系正好相符,于是,需要采用数学方法构造一种坐标系,其各坐标轴恰好与被计算物体的边界相适应,这种坐标系就称为贴体坐标系(body-fitted coordinates)。直角坐标系是矩形区域的贴体坐标系,极坐标是环扇形区域的贴体坐标系。



使用贴体坐标系生成网格的方法的基本思想可叙述如下。



假定有图8(a)所示的在x-y少平面内的不规则区域,现在,为了构造与该区域相适应的贴体坐标系,在该区域中相交的两个边界作为曲线坐标系的两个轴,记为ξη。在该物体的4个边上,可规定不同地点的ξη值。例如,我们可假定在A点有ξ=0η=0,而在C点有ξ=1η=1。这样,就可把ξ-η看成是另一个计算平面上的直角坐标系的两个轴,根据上面规定的ξη的取值原则,在计算平面上的求解区域就简化成了一个矩形区域,只要给定每个方向的节点总数,立即可以生成一个均匀分布的网格,如图8b)所示。现在,如果能在x-y平面上找出与ξ-η平面上任意一点相对应的位置,则在物理平面上的网格可轻松生成。因此,剩下的问题是如何建立这两个平面间的关系,这就是生成贴体坐标的方法。日前常用的生成贴体坐标的方法包括代数法和微分方程法。



所谓代数法就是通过一些代数关系把物理平面上的不规则区域转换成计算平面上的矩形区域。各种类型的代数法很多,常见的包括边界规范法、双边界法和无限插值法等。微分方程法是通过一个微分方程把物理平面转换成计算平面。该方法的实质是微分方程边值问题的求解。该方法是构造贴体坐标非常有效的方法,也是多数网格生成软件广泛采用的方法。在该方法中,可使用椭圆、双曲型和抛物型偏微分方程来生成网格,其中,椭圆型方程用得较多。关于代数法和微分方程法的详细信息可参考相关文献。



6 生成网格的专用软件



网格生成是一个漫长而枯燥的工作过程,经常需要进行大量的试验才能取得成功。因此,出现了许多商品化的专业网格生成软件。如GAMBITTGridGeoMeshpreBFCICEM CFD等。此外,一些CFD或有限元分结构分析软件,如ANSYSI-DEASNASTRANPATRANARIES等,也提供了专业化的网格生成工具。



这些软件或工具的使用方法大同小异,且各软件之间往往能够共享所生成的网格文件,例如FLUENT就可读取上述各软件所生成的网格。



有一点需要说明,由于网格生成涉及几何造型,特别是3D实体造型,因此,许多网格生成软件除自己提供几何建模功能外,还允许用户利用CAD软件(如AutoCADPro/ENGINEER)先生成几何模型,然后再导入到网格软件中进行网格划分。因此,使用前处理软件,往往需要涉及CAD软件的造到功能。

FLUENT简介

通用CFD软件包,用来模拟从不可压缩到高度可压缩范围内的复杂流动。由于采用了多种求解方法和多重网格加速收敛技术,因而FLUENT能达到最佳的收敛速度和求解精度。灵活的非结构化网格和基于解的自适应网格技术及成熟的物理模型,使FLUENT在转捩与湍流、传热与相变、化学反应与燃烧、多相流、旋转机械、动/变形网格、噪声、材料加工、燃料电池等方面有广泛应用。



FLUENT软件具有以下特点:

☆ FLUENT软件采用基于完全非结构化网格的有限体积法,而且具有基于网格节点和网格单元的梯度算法;

定常/非定常流动模拟,而且新增快速非定常模拟功能;

☆ FLUENT软件中的动/变形网格技术主要解决边界运动的问题,用户只需指定初始网格和运动壁面的边界条件,余下的网格变化完全由解算器自动生成。网格变形方式有三种:弹簧压缩式、动态铺层式以及局部网格重生式。其局部网格重生式是FLUENT所独有的,而且用途广泛,可用于非结构网格、变形较大问题以及物体运动规律事先不知道而完全由流动所产生的力所决定的问题;

☆ FLUENT软件具有强大的网格支持能力,支持界面不连续的网格、混合网格、动/变形网格以及滑动网格等。值得强调的是,FLUENT软件还拥有多种基于解的网格的自适应、动态自适应技术以及动网格与网格动态自适应相结合的技术;

☆ FLUENT软件包含三种算法:非耦合隐式算法、耦合显式算法、耦合隐式算法,是商用软件中最多的;

☆ FLUENT软件包含丰富而先进的物理模型,使得用户能够精确地模拟无粘流、层流、湍流。湍流模型包含Spalart-Allmaras模型、k-ω模型组、k-ε模型组、雷诺应力模型(RSM)组、大涡模拟模型(LES)组以及最新的分离涡模拟(DES)V2F模型等。另外用户还可以定制或添加自己的湍流模型;

适用于牛顿流体、非牛顿流体;

含有强制/自然/混合对流的热传导,固体/流体的热传导、辐射;

化学组份的混合/反应;

自由表面流模型,欧拉多相流模型,混合多相流模型,颗粒相模型,空穴两相流模型,湿蒸汽模型;

融化溶化/凝固;蒸发/冷凝相变模型;

离散相的拉格朗日跟踪计算;

非均质渗透性、惯性阻抗、固体热传导,多孔介质模型(考虑多孔介质压力突变);

风扇,散热器,以热交换器为对象的集中参数模型;

惯性或非惯性坐标系,复数基准坐标系及滑移网格;

动静翼相互作用模型化后的接续界面;

基于精细流场解算的预测流体噪声的声学模型;

质量、动量、热、化学组份的体积源项;

丰富的物性参数的数据库;

磁流体模块主要模拟电磁场和导电流体之间的相互作用问题;

连续纤维模块主要模拟纤维和气体流动之间的动量、质量以及热的交换问题;

高效率的并行计算功能,提供多种自动/手动分区算法;内置MPI并行机制大幅度提高并行效率。另外,FLUENT特有动态负载平衡功能,确保全局高效并行计算;

☆ FLUENT软件提供了友好的用户界面,并为用户提供了二次开发接口(UDF);

☆ FLUENT软件采用C/C++语言编写,从而大大提高了对计算机内存的利用率。

ANSYS CFX介绍

CFX是全球第一个通过ISO9001质量认证的大型商业CFD软件,是英国AEA Technology 公司为解决其在科技咨询服务中遇到的工业实际问题而开发,诞生在工业应用背景中的CFX一直将精确的计算结果、丰富的物理模型、强大的用户扩展性作为其发展的基本要求,并以其在这些方面的卓越成就,引领着CFD技术的不断发展。目前,CFX已经遍及航空航天、旋转机械、能源、石油化工、机械制造、汽车、生物技术、水处理、火灾安全、冶金、环保等领域,为其在全球6000多个用户解决了大量的实际问题。

回顾CFX发展的重要里程,总是伴随着她对革命性的CFD新技术的研发和应用。1995年,CFX收购了旋转机械领域著名的加拿大ASC公司,推出了专业的旋转机械设计与分析模块-CFX-TascflowCFX-Tascflow一直占据着90%以上的旋转机械CFD市场份额。同年,CFX成功突破了CFD领域的在算法上的又一大技术障碍,推出了全隐式多网格耦合算法,该算法以其稳健的收敛性能和优异的运算速度,成为CFD技术发展的重要里程碑。CFX一直和许多工业和大型研究项目保持着广泛的合作,这种合作确保了CFX能够紧密结合工业应用的需要,同时也使得CFX可以及时加入最先进的物理模型和数值算法。作为CFX的前处理器,ICEM CFD优质的网格技术进一步确保CFX的模拟结果精确而可靠。

2003年,CFX加入了全球最大的CAE仿真软件ANSYS的大家庭中。CFX的用户将会得到包括从固体力学、流体力学、传热学、电学、磁学等在内的多物理场及多场耦合整体解决方案。CFX将永远和我们的用户伙伴一起,用最先进的技术手段,不断揭开我们身边真实物理世界的神秘面纱。



一.CFX产品特点简介

CFX是全球第一个在复杂几何、网格、求解这三个CFD传统瓶径问题上均获得重大突破的商业CFD软件。借助于其独一无二的,有别于其它CFD软件的技术特点,CFX领导着新一代高性能CFD商业软件的整体发展趋势。



精确的数值方法

和大多数CFD软件不同的是,CFX采用了基于有限元的有限体积法,在保证了有限体积法的守恒特性的基础上,吸收了有限元法的数值精确性。



基于有限元的有限体积法,对六面体网格单元采用24点插值,而单纯的有限体积法仅采用6点插值。

基于有限元的有限体积法,对四面体网格单元采用60点插值,而单纯的有限体积法仅采用4点插值。

CFX在湍流模型的应用上,也一直是业界领先的。除了常用的湍流模型外,CFX最先使用了大涡模拟(LES)和分离涡模拟(DES)等高级湍流模型。





快速稳健的求解技术

CFX是全球第一个发展和使用全隐式多网格耦合求解技术的商业化软件,这种革命性的求解技术克服了传统算法需要假设压力项-求解-修正压力项的反复迭代过程,而同时求解动量方程和连续性方程,加上其采用的多网格技术,CFX的计算速度和稳定性较传统方法提高了1~2个数量级,更重要的是,CFX的求解器获得了对并行计算最有利的几乎线形的计算时间-网格数量求解性能,这使工程技术人员第一次敢于计算大型工程的真实流动问题。CFX突出的并行功能还表现在它可以网络上UNIXLINUXWINDOWS平台之间随意并行。



丰富的物理模型

CFX的物理模型是建立在世界最大的科技工程企业AEA Technology 50余年科技工程实践经验基础之上,经过近30年的发展,CFX拥有包括流体流动、传热、辐射、多相流、化学反应、燃烧等问题的丰富的通用物理模型;还拥有诸如气蚀、凝固、沸腾、多孔介质、相间传质、非牛顿流、喷雾干燥、动静干涉、真实气体等大批复杂现象的实用模型。



此外,CFX为用户提供了从方便易用的表达式语言(CEL)到功能强大的用户子程序的一系列不同层次的用户接口程序,允许用户加入自己的特殊物理模型。



旋转机械一体化解决方案

在旋转机械领域,CFX向用户提供从设计到CFD分析的一体化解决方案。提供了三个旋转机械设计分析的专用工具:BladeGenTurboGridTASCFlow

BladeGen是交互式涡轮机械叶片设计工具。用户通过修改元件库参数或完全依靠BladeGen中的工具设计各种旋转和静止叶片元件及新型叶片,对各种轴向流和径向流叶型,从CAD设计到CFD分析在数分钟即可完成。

TurboGrid为叶栅通道网格生成工具。她采用了创新性的网格模板技术,结合参数化能力,工程师不仅可以既快捷又简单地为绝大多数叶片类型生成高质量叶栅通道网格。所需用户提供的只是叶片数目、叶片及轮毂和外罩的外形数据文件。

TASCflow是全球公认最好的旋转机械工程CFD软件,由于特为旋转机械裁制的完整软件体系,以及在旋转机械行业十多年的专业经验,TASCflow被旋转机械领域90%以上的企业作为主要的气动/水动力学分析和设计工具,其中包括GEPratt & Whitney, Rolls RoyceWesting HouseABBSiemensCEVoith Hycho等企业界巨擘

STAR-CD简介

概要



STAR-CD最初是由流体力学鼻祖-英国帝国理工大学计算流体力学领域的专家教授开发的,他们根据传统传热基础理论,合作开发了基于有限体积算法的非结构化网格计算程序。在完全不连续网格、滑移网格和网格修复等关键技术上,STAR-CD又经过来自全球10多个国家,超过200名知名学者的不断补充与完善,成为同类软件中网格适应性、计算稳定性和收敛性最好的佼佼者。最新湍流模型的推出使得其在计算的稳定性、收敛性和结果的可靠性等方面在又得到了显著的提高。



网格生成工具软件包Proam软件利用单元修整技术核心技术,使得各种复杂形状几何体能够简单快速地生成网格。CD公司还开发了各种特殊用途的网格工具软件:用于发动机内部热分析的es-ice软件、汽车空气动力学分析es-aero软件等es系列软件,用于曲面分析、非结构化网格生成的专业软件ICEM CFD Tetra, 适用于涡轮机械流体分析的旋转体网格自动生成工具软件TIGER, 以及用于搅拌器内流体分析的专业网格生成软件Mixpert

STAR-CD能够对绝大部分典型物理现象进行建模分析,并且拥有较为高速的大规模并行计算能力,还可以应用到工业制造、化学反应、汽车动力、结构优化设计等其他许多领域的流体分析,此外STAR-CD可以同全部的CAE工具软件数据进行连接对口,大大方便了各种工程开发与研究。



特性



全世界3000多名用户的软件使用业绩

全年400的技术分析的算例和强大的支持力量

具备最新的物理模型

采用高速而可靠计算技术

完全不连续网格、滑移网格和网格修复等关键技术

后处理简单便捷

分析计算的GUI清晰明了

可与各种CADCAE系统对口,进行数据套用

具有并行计算能力,包括内存共享模式和内存分散模式

PHOENICS简介

PHOENICS软件是世界上第一套计算流体与计算传热学商用软件,它是Parabolic Hyperbolic Or Elliptic Numerical Integration Code Series 几个字母的缩写,这意味着只要有流动和传热都可以使用PHOENICS程序来模拟计算。除了通用计算流体/计算传热学软件应该拥有的功能外PHOENICS软件有自己独特的功能:

1、开放性:PHOENICS最大限度地向用户开放了程序,用户可以根据需要任意修改添加用户程序、用户模型。PLANTINFORM功能的引入使用户不再需要编写FORTRAN源程序,GROUND程序功能使用户修改添加模型更加任意、方便。

2CAD接口:PHOENICS可以读入任何CAD软件的图形文件。

3MOVOBJ:运动物体功能可以定义物体运动,避免了使用相对运动方法的局限性。

4、大量的模型选择:20多种湍流模型,多种多相流模型,多流体模型,燃烧模型,辐射模型。

5、提供了欧拉算法也提供了基于粒子运动轨迹的拉格朗日算法。

6、计算流动与传热时能同时计算浸入流体中的固体的机械和热应力。

7VR(虚拟现实)用户界面引入了一种崭新的CFD建模思路。

8PARSOLCUT CELL) :部分固体处理。

9、软件自带1000多个例题,附有完整的可读可改的原始输入文件。

10PHOENICS专用模块

NUMECA简介

NUMECA国际公司于1992年,在国际著名叶轮机械气体动力学及CFD专家,比利时王国科学院院士、布鲁塞尔自由大学流体力学系主任查尔斯-赫思(Charles HIRSCH)教授的倡导下成立。其核心软件是在该系80~90年代为欧洲宇航局(ESA)编写的CFD软件欧洲空气动力数值求解器(EURANUS)--的基础之上发展起来的。

NUMECA国际公司一直致力于高度集成及用户化的流场数值模拟软件,及其叶轮机械设计软件的研制和开发。这些软件均采用最新的先进数值分析技术。NUMECA国际公司集中了许多优秀的CFD工程师,他们可给用户提供及时有效的技术支持和服务。

自从NUMECA国际公司成立以来,特别是近五年来,NUMECA国际公司已经成功地在国际CFD市场,特别是在叶轮机械领域,掀起了强劲的NUMECA旋风,使国际上各主要叶轮机械厂家(如:Garrett, Sulzer Turbo, ABB Turbo, Thermodyn (GE), MAN, KBB, Shin Nippon Machinery, ALSTOM Power, Honda and SOLAR TurbinesFor aero & rocket engines, Snecma, Honeywell, Rolls-Royce, KHI, Fiat Avio, Pratt&Whitney, Aerodisa, Japan Defence Agency)都开始大量使用NUMECA软件,使得NUMECA的用户一直快速稳步地增长。

NUMECA软件主要包括:流体动力学分析软件和设计优化软件两大类。

1.流体动力学分析软件包

分析软件包有FINE/TURBOFINE/HEXA等,其中均包括前处理,求解器和后处理三个部分。FINE/TURBO用于内部和外部流动, FINE/HEXA也用于内部或外部流动,但为非结构自适应网格。

FINE/TURBO:可用于任何可压或不可压、定常或非定常、二维或三维的粘性或无粘内部(其中包括任何叶轮机械:轴流或离心,风机,压缩机,泵,汽轮机,水轮机,船舶推进器,搅拌罐等。单级或多级,或整机,或任何其他内部流动:塔体,换热器,分离器,管道,涡壳,阀门,密封等)流动,和各种外部绕流(包括各种水下载运器,飞行器等)的数值模拟。其中包括:

IGG:准自动网格生成器。可生成任何几何形状的多块结构网格。采用准自动的块化技术和模板技术。生成网格的速度及质量均远高于其它软件。是全球最优秀的结构化网格生成器之一。

IGG/AUTOGRID:自动网格生成器。可自动生成任何叶轮机械(包括任何轴流,混流,离心机械,可带有顶部、根部间隙,可带有分流叶片,等)的H形,I形和HOH形网格。该软件已经被国际工业部门认为是用于叶轮机械(航空发动机,汽轮机,水轮机,船舶推进器,泵,压缩机等)最好、最方便及网格质量最好的网格生成软件。是生成导弹外部流场网格最优秀的软件。

EURANUS:求解器。求解三维雷诺平均的NS方程。采用多重网格加速技术;全二阶精度的差分格式;基于MPI平台的并型处理;可求解任何二维、三维、定常/非定常、可压/不可压,单级或多级,或整个机器的粘性/无粘流动。可处理任何真实气体;有多中转/静子界面处理方法;自动冷却孔计算的模块;多级通流计算;自动初场计算;湿蒸汽机算;共额传热计算;两相流计算;空化等等。其多级(10级以上)求解性能良好。

CFVIEW:功能强大流动显示器。可做任何定性或定量的矢量标量的显示图。特别是可处理和制作适合于叶轮机械(航空发动机,汽轮机,水轮机,船舶推进器,泵,压缩机等)和带翼武器(导弹)的任何S1S2面,及周向平均图。该软件已经被国际工业部门认为是用于叶轮机械(航空发动机,汽轮机,水轮机,船舶推进器,泵,压缩机等)和带翼武器最好的后处理软件。

FINE/HEXA:非结构网格CFD软件包。该软件包的独特性在于:她所采用的网格全是六面体的非结构网格(这是目前最先进的方法之一);自动自适应的多重网格求解器。

HEXPRESS:非结构网格生成器。可自动生成任意复杂三维几何体(飞机,航天器,非周期性导弹,水下载运器)的全六面体非结构网格。可直接输入多种作图软件的数据,并对其有自动修补动能。是目前全球最优秀的非结构化网格生成器之一。

优秀的流体动力学分析软件需要经历长期地使用验证,不断地优化完善,新技术补充丰富的过程,是随着时代的发展而进步的,同时,也是时代的结晶。NUMECA公司的软件-FINE系列软件作为最新的流体动力学分析软件,直到2003年,才引入到中国。她采用了近几年研发出的最新,最先进技术,因此,无论在计算速度、计算精度、所需计算机内存、使用方便程度、界面友好程度等方面都优于其他软件。其计算速度、精度和计算机内存需要量均比其它软件优越,其优越程度使用过其它软件的用户非常惊讶。现在其它软件公司(在网格生成和核心求解器中)也逐渐开始采用类似于NUMECA的方法。她所研发并采用的其它技术和方法现也已被其它软件开发者逐步采用,因此,NUMECA公司领导着世界CFD软件发展的新潮流。

2.设计优化软件包

FINE/DESIGN3D是一个空前新颖的,用于新型、高效三维叶型设计和优化的软件工具。它给用户提供了一个设计叶轮机械的新概念。该软件是在国际上(日、美、欧)叶轮机械(航空发动机,汽轮机,气轮机,水轮机,船舶推进器,泵,压缩机等)行业多家企业多年使用和总结下发展起来的,为从事叶轮机械的科研人员量身定做的专业设计优化软件。它以用户定义的多参数目标函数,以及几何和机械等方面的约束,来定义设计性能目标。

该优化设计过程是全自动的,优化范围可覆盖约束之内的整个空间,而不像其它软件采用仅能覆盖非常有限个点的人工尝试和修改的方法。

本文来源:https://www.2haoxitong.net/k/doc/ea71ff3c0912a21614792912.html

《流体力学-流体仿真介绍.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式