地理坐标系统与投影坐标系统教材

发布时间:2019-04-12 14:49:23   来源:文档文库   
字号:

坐标系统又可分为两大类:地理坐标系统、投影坐标系统。

弄清地球椭球体(Ellipsoid)、大地基准面(Datum)及地图投影(Projection)三者的基本概念及它们之间的关系。

一、 地球椭球体(Ellipsoid)

地球表面是凸凹不平,是一个无法用数学公式表达的曲面,不能作为测量和制图的基准面。假想一个扁率极小的椭圆,绕短轴旋转所形成的规则椭球体称之为地球椭球体,其表面是一个规则的数学表面,可以用数学公式表达,所以在测量和制图中就用它替代地球的自然表面。

地球椭球体有长半径和短半径之分,长半径(a)即赤道半径,短半径(b)即极半径。f=a-b/a为椭球体的扁率,表示椭球体的扁平程度。由此可见,地球椭球体的形状和大小取决于abf 。因此,abf被称为地球椭球体的三要素。 常见的地球椭球体如下:

二、 大地基准面(Datum)

不同的坐标系其实就是所采用的椭球体不同,因此椭球参数不同,原点不同,X Y Z轴不同。

把地球椭球体和基准面结合起来看,如果把地球比做是"马铃薯",表面凸凹不平,而地球椭球体就好比一个"鸭蛋",那么按照前面的定义,基准面就定义了怎样拿这个"鸭蛋"去逼近"马铃薯"某一个区域的表面,XYZ轴进行一定的偏移,并各自旋转一定的角度,大小不适当的时候就缩放一下"鸭蛋",这样通过如上的处理必定可以达到很好的逼近地球某一区域的表面。

因此,每个国家或地区均有各自的基准面,我们通常称谓的北京54坐标系、西安80坐标系实际上指的是我国的两个大地基准面。椭球体与基准面之间的关系是一对多的关系,也就是基准面是在椭球体基础上建立的,但椭球体不能代表基准面,同样的椭球体能定义不同的基准面。

北京54坐标系: (BJZ54),北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以前苏联的克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。它的原点在在前苏联的普尔科沃

a.属参心大地坐标系;

b.采用克拉索夫斯基椭球的两个几何参数;

c.大地原点在原苏联的普尔科沃;

d.采用多点定位法进行椭球定位;

e.高程基准为 1954年青岛验潮站求出的黄海平均海水面;

f.高程异常以原苏联 1955年大地水准面重新平差结果为起算数据。按我国天文水准路线推算而得。

椭球坐标参数:

长半轴a=6378245m;短半轴=6356863.0188m;扁率α=1/298.3

缺点:

1 椭球参数有较大误差。克拉索夫斯基椭球差数与现代精确的椭球参数相比,长半轴约大109m

2 参考椭球面与我国大地水准面存在着自西向东明显的系统性的倾斜,在东部地区大地水准面差距最大达+60m。这使得大比例尺地图反映地面的精度受到影响,同时也对观测量元素的归算提出了严格的要求。

3 几何大地测量和物理大地测量应用的参考面不统一。我国在处理重力数据时采用赫尔默特19001909年正常重力公式,与这个公式相应的赫尔默特扁球不是旋转椭球,它与克拉索夫斯基椭球是不一致的,这给实际工作带来了麻烦。

4 定向不明确。椭球短半轴的指向既不是国际普遍采用的国际协议(原点)CIOConventional International Origin),也不是我国地极原点JYD1968.0;起始大地子午面也不是国际时间局BIHBureau International de I Heure)所定义的格林尼治平均天文台子午面,从而给坐标换算带来一些不便和误差。

1980西安坐标系:

1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇。基准面采用青岛大港验潮站19521979年确定的黄海平均海水面(即1985国家高程基准)。

1)大地原点在我国中部,具体地点是陕西省泾阳县永乐镇;

2)西安80坐标系是参心坐标系,椭球短轴Z轴平行于地球质心指向地极原点方向,大地起始子午面平行于格林尼治平均天文台子午面;X轴在大地起始子午面内与 Z轴垂直指向经度 0方向;Y轴与 ZX轴成右手坐标系;

3)椭球参数采用IUG 1975年大会推荐的参数,因而可得西安80椭球两个最常用的几何参数为:

长半轴a=6378140±5m

短半轴b=6356755.2882m

率α=1/298.257

第一偏心率平方 =0.00669438499959 第二偏心率平方=0.00673950181947

椭球定位时按我国范围内高程异常值平方和最小为原则求解参数。

4)多点定位;

5)大地高程以1956年青岛验潮站求出的黄海平均水面为基准

WGS-84坐标系:

国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向BIH (国际时间服务机构)1984.O定义的协议地球极(CTP)方向,X轴指向BIH 1984.0的零子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系. GPS广播星历是以WGS-84坐标系为根据的.

WGS-84采用的椭球是国际大地测量与地球物理联合会第17届大会大地测量常数推荐值,其四个基本参数:

长半径:a=6378137±2m);

地球引力和地球质量的乘积:GM=3986005×108m3s-2±0.6×108m3s-2

正常化二阶带谐系数:C20=-484.16685×10-6±1.3×10-9

地球重力场二阶带球谐系数:J2=108263×10-8

地球自转角速度:ω=7292115×10-11rads-1±0.150×10-11rads-1

扁率f=0.003352810664

三、 地图投影(Projection) :将球面坐标转化为平面坐标的过程便称为投影。

地理坐标系是用经纬度表示球面的位置,但精确分析需要在平面上来进行,这就要将地图从三维地理坐标通过投影转换成二维平面坐标,这样的坐标系叫投影坐标系(Coordina te Projection System),它是在地理坐标系上加上投影转换参数。

投影既然是一种数学变换方法,那么任何一种投影都存在一定的变形,因此可以按照变形性质将投影方法如下分类:等角投影(Conformal Projection)、等积投影(Equal Area Projection)、等距投影(Equidistant Projection)、等方位投影(True-direction Projection)四种。

如果按照投影的构成方法分类又可分为方位、圆柱、圆锥投影三种,在上述三种投影中由于几何面与球面的关系位置不同,又分为正轴、横轴和斜轴三种。如图46

墨卡托(Mercator)投影

是一种"等角正切圆柱投影"。假设地球被围在一个中空的圆柱里,其标准纬线与圆柱相切接触,然后再假想地球中心有一盏灯,把球面上的图形投影到圆柱体上,再把圆柱体展开,这就是一幅选定标准纬线上的"墨卡托投影"绘制出的地图。

Google们为什么选择墨卡托投影?

墨卡托投影的”等角”特性,保证了对象的形状的不变行,正方形的物体投影后不会变为长方形。”等角”也保证了方向和相互位置的正确性,因此在航海和航空中常常应用,而Google们在计算人们查询地物的方向时不会出错。 墨卡托投影的”圆柱”特性,保证了南北(纬线)和东西(经线)都是平行直线,并且相互垂直。而且经线间隔是相同的,纬线间隔从标准纬线(此处是赤道,也可能是其他纬线)向两级逐渐增大。 但是,”等角”不可避免的带来的面积的巨大变形,特别是两极地区,明显的如格陵兰岛比实际面积扩大了N倍。

为什么是圆形球体,而非椭球体? 这说来简单,仅仅是由于实现的方便,和计算上的简单,精度理论上差别0.33%之内,特别是比例尺越大,地物更详细的时候,差别基本可以忽略。

高斯-克吕格投影:

高斯是德国杰出的数学家、测量学家。高斯-克吕格尔投影是德国的 C.F.高斯于1822年提出的,后经德国的克吕格尔(J.H.L.Krüger)1912年加以扩充而完善。他提出的横椭圆柱投影是一种正形投影。它是将一个横椭圆柱套在地球椭球体上,如下图所示:

椭球体中心O在椭圆柱中心轴上,椭球体南北极与椭圆柱相切,并使某一子午线与椭圆柱相切。此子午线称中央子午线。然后将椭球体面上的点、线按正形投影条件投影到椭圆柱上,再沿椭圆柱NS点母线割开,并展成平面,即成为高斯投影平面。在此平面上:

①中央子午线是直线,其长度不变形,离开中央子午线的其他子午线是弧形,凹向中央子午线。离开中央子午线越远,变形越大。

②投影后赤道是一条直线,赤道与中央子午线保持正交。

③离开赤道的纬线是弧线,凸向赤道。

高斯投影可以将椭球面变成平面,但是离开中央子午线越远变形越大,这种变形将会影响测图和施工精度。为了对长度变形加以控制,测量中采用了限制投影宽度的方法,即将投影区域限制在靠近中央子午线的两侧狭长地带。这种方法称为分带投影。投影带宽度是以相邻两个子午线的经差来划分。有6°带、3°带等不同投影方法。

6°带投影是从英国格林尼治子午线开始,自西向东,每隔6°投影一次。这样将椭球分成60个带,编号为160带,如下图所示:



各带中央子午线经度(L)可用下式计算:

  式中n6°带的带号。

已知某点大地经度L,可按下式计算该点所属的带号:

有余数时,为n的整数商+1

3°带是在6°带基础上划分的,其中央子午线在奇数带时与6°带中央子午线重合,每隔3°为一带,共120带,各带中央子午线经度(L)为:

式中n′为3°带的带号。

我国幅员辽阔,含有116°带,即从1323(中央子午线从75°~135°)213°带,从2545带。北京位于6°带的第20带,中央子午线经度为117°。

高斯-克吕格投影的基本知识:我国大中比例尺地图均采用高斯-克吕格投影Gauss Kruger,其通常是按6度和3度分带投影,1:2.5万-1:50万比例尺地形图采用经差6度分带,1:1万比例尺的地形图采用经差3度分带。

UTM投影

全称为"通用横轴墨卡托投影",是一种"等角横轴割圆柱投影",椭圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条相割的经线上没有变形,而中央经线上长度比0.9996UTM投影是为了全球战争需要创建的,美国于1948年完成这种通用投影系统的计算。与高斯-克吕格投影相似,该投影角度没有变形,中央经线为直线,且为投影的对称轴,中央经线的比例因子取0.9996是为了保证离中央经线左右约330km处有两条不失真的标准经线。UTM投影分带方法与高斯-克吕格投影相似,是自西经180°起每隔经差6度自西向东分带,将地球划分为60个投影带。我国的卫星影像资料常采用UTM投影。

两者异同

高斯-克吕格(Gauss-Kruger)投影与UTM投影(Universal Transverse Mercator,通用横轴墨卡托投影)都是横轴墨卡托投影的变种,目前一些国外的软件或国外进口仪器的配套软件往往不支持高斯-克吕格投影,但支持UTM投影,因此常有把UTM投影当作高斯-克吕格投影的现象。

从投影几何方式看,高斯-克吕格投影是"等角横切圆柱投影",投影后中央经线保持长度不变,即比例系数为1UTM投影是"等角横轴割圆柱投影",圆柱割地球于南纬80度、北纬84度两条等高圈,投影后两条割线上没有变形,中央经线上长度比0.9996,该投影将地球划分为60个投影带,每带经差为6度,已被许多国家作为地形图的数学基础。

从计算结果看,UTM投影与高斯投影的主要区别在南北格网线的比例系数上,高斯-克吕格投影的中央经线投影后保持长度不变,即比例系数为1,而UTM投影的比例系数为0.9996UTM投影沿每一条南北格网线比例系数为常数,在东西方向则为变数,中心格网线的比例系数为0.9996,在南北纵行最宽部分的边缘上距离中心点大约 363公里,比例系数为 1.00158

从分带方式看,两者的分带起点不同,高斯-克吕格投影自0度子午线起每隔经差6度自西向东分带,第1带的中央经度为3°;UTM投影自西经180°起每隔经差6度自西向东分带,第1带的中央经度为-177°,因此高斯-克吕格投影的第1带是UTM的第31带。此外,两投影的东伪偏移都是500公里,高斯-克吕格投影北伪偏移为零,UTM北半球投影北伪偏移为零,南半球则为10000公里。

本文来源:https://www.2haoxitong.net/k/doc/e3c52af130b765ce0508763231126edb6e1a760c.html

《地理坐标系统与投影坐标系统教材.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式