电力电子技术实验指导书2010

发布时间:2010-12-02 20:39:45   来源:文档文库   
字号:

电力电子技术

实验指导书

2010 2

注意事项

1. 课前预习,复习相关理论知识。

2. 注意安全,不乱触摸裸露的线路或器件。

3. 装卸挂件时注意轻拿轻放。

4. 每个小组做好分工,各司其职。

5. 实验过程中,确保电源关闭方可接插导线或者更改线路,接完线后仔细检查无误后方可开启电源。

6. 真实准确的记录好数据或波形。

7. 实验完成后,整理好导线,归还其他工具,清理实验台,保证实验台的整洁。

8. 认真撰写并按时交实验报告。

山东科技大学电气信息系

20102

第一章 电力电子技术实验概述 1

1.1 实验的特点和要求 1

1.2 实验前的准备 1

1.3 实验实施 1

1.4 实验总结 1

1.5 实验安全操作规程 2

第二章 DJDK-1型电力电子技术实验装置简介 2

2.1 DJK01电源控制屏 3

2.2 各挂件功能介绍 4

2.2.1 DJK02挂件(三相变流桥路) 4

2.2.2 DJK02-1挂件(三相晶闸管触发电路) 5

2.2.3 DJK03-1挂件(晶闸管触发电路) 7

2.2.4 DJKO6挂件(给定及实验器件) 12

2.2.5 DJK10挂件(变压器实验) 13

第三章 电力电子技术实验 14

实验一 单结晶体管触发电路实验 14

实验二 单相半波可控整流电路实验 15

实验三 三相桥式全控整流及有源逆变电路实验 17

实验四 单相交流调压电路实验 20


第一章 电力电子技术实验概述

《电力电子技术》是电气工程及其自动化、自动化等专业的三大电子技术基础课程之一,课程涉及面广,内容包括电力、电子、控制、计算机技术等,而实验环节是此课程的重要组成部分。通过实验,可以加深对理论的理解,培养和提高学生独立动手能力和分析、解决问题的能力。

1.1 实验的特点和要求

电力电子技术实验的内容较多、较新,实验系统也比较复杂,系统性较强。电力电子技术实验理论教学的重要的补充和继续,而理论教学则是实验教学的基础。学生在实验中应学会运用所学的理论知识去分析和解决实际系统中出现的各种问题,提高动手能力;同时通过实验来验证理论,促使理论和实践相结合,使认识不断提高、深化。具体地说,学生在完成指定的实验后,应具备以下能力:

(1)掌握电力电子变流装置主电路、触发或驱动电路的构成及调试方法,能初步设计和应用这些电路。

(2)熟悉并掌握基本实验设备、测试仪器的性能及使用方法。

(3)能够运用理论知识对实验现象、结果进行分析和处理,解决实验中遇到的问题。

(4)能够综合实验数据,解释实验现象,编写实验报告。

1.2 实验前的准备

实验准备即为实验的预习阶段,是保证实验能否顺利进行的必要步骤。每次实验前都应先进行预习,从而提高实验质量和效率,否则就有可能在实验时不知如何下手,浪费时间,完不成实验要求,甚至有可能损坏实验装置。因此,实验前应做到:

(1)复习教材中与实验有关的内容,熟悉与本次实验相关的理论知识。

(2)阅读本教材中的实验指导,了解本次实验的目的和内容;掌握本次实验系统的工作原理和方法;明确实验过程中应注意的问题。

(3)写出预习报告,其中应包括实验系统的详细接线图、实验步骤、数据记录表格等。

(4)熟悉实验所用的实验装置、测试仪器等

(5)进行实验分组,一般情况下每组34人。

1.3 实验实施

  在完成理论学习、实验预习等环节后,就可进入实验实施阶段。实验时要做到以下几点:

(1) 指导教师对实验装置作介绍,要求学生熟悉本次实验使用的实验设备、仪器,明确这些设备的功能与使用方法。 (2)按实验小组进行实验,实验小组成员应进行明确的分工,以保证实验操作协调,记录数据准确可靠,各人的任务应在实验进行中实行轮换,以便实验参加者能全面掌握实验技术,提高动手能力。

(3)按预习报告上的实验系统详细线路图进行接线,一般情况下,应首先接好控制电路进行调试,待控制电路调试好之后再接好主电路;先串联,后并联。

(4)完成实验系统接线后,必须进行自查。串联回路从电源的某一端出发,按回路逐项检查各仪表、设备、负载的位置、极性等是否正确;并联支路则检查其两端的连接点是否在指定的位置。距离较远的两连接端必须选用长导线直接跨接,不得用2根导线在实验装置上的某接线端进行过渡连接。

(5)实验时,应按实验教材所提出的要求及步骤,逐项进行实验和操作。除作阶跃启动试验外,系统启动前,应使负载电阻值最大,给定电位器处于零位;测试记录点的分布应均匀;改接线路时,必须断开主电源方可进行。实验中应观察实验现象是否正常,所得数据是否合理,实验结果是否与理论相一致。

(6)完成本次实验全部内容后,应请指导教师检查实验数据、记录的波形。经指导教师认可后方可拆除接线,整理好连接线、仪器、工具,使之物归原位。

1.4 实验总结

实验的最后阶段是实验总结,即对实验数据进行整理、绘制波形和图表、分析实验现象、撰写实验报告。每位实验参与者都要独立完成一份实验报告,实验报告的编写应持严肃认真、实事求是的科学态度。如实验结果与理论有较大出入时,不得随意修改实验数据和结果,不得用凑数据的方法来向理论靠拢,而是用理论知识来分析实验数据和结果,解释实验现象,找出引起较大误差的原因。

实验报告的一般格式如下:

(1)实验名称、专业、班级、实验学生姓名、同组者姓名和实验时间。

(2)实验目的、实验线路、实验内容。

(3)实验设备、仪器、仪表的型号、规格、铭牌数据及实验装置编号。

(4)实验数据的整理、列表、计算,并列出计算所用的计算公式。

(5)画出与实验数据相对应的特性曲线及记录的波形。

(6)用理论知识对实验结果进行分析总结,得出明确的结论。

(7)对实验中出现的某些现象、遇到的问题进行分析、讨论,写出心得体会,并对实验提出自己的建议和改进措施。

(8)实验报告应写在一定规格的报告纸上,保持整洁。

(9)每次实验每人独立完成一份报告,按时送交指导教师批阅。

1.5 实验安全操作规程

为了顺利完成电力电子技术及电机控制实验,确保实验时人身安全与设备可靠运行要严格遵守如下安全操作规程:

(1)在实验过程时,绝对不允许实验人员双手同时接到隔离变压器的两个输出端,将人体作为负载使用。

(2)提高安全用电常识,任何接线和拆线都必须在切断主电源后方可进行。

(3)为了提高实验过程中的效率,完成接线或改接线路后,应仔细再次核对线路,并使组内其他同学引起注意后方可接通电源。

(4)如果在实验过程中发生过流告警,应仔细检查线路以及电位器的调节参数,确定无误后方能重新进行实验。

(5)在实验中应注意所接仪表的最大量程,选择合适的负载完成实验,以免损坏仪表、电源或负载。

(6)系统起动前负载电阻必须放在最大阻值,给定电位器必须退回至零位后,才允许合闸起动并慢慢增加给定,以免元件和设备过载损坏。

第二章 DJDK-1型电力电子技术实验装置简介

实验装置采用挂件结构,可根据不同实验内容进行自由组合,挂件面板分为三种接线孔,强电、弱电及波形观测孔,三者有明显的区别,注意不能插错。

2-1 DJDK-1 电力电子技术实验装置外形图

2.1 DJK01电源控制屏

电源控制屏主要为实验提供各种电源,如三相交流电源、直流励磁电源等;同时为实验提供所需的仪表,如直流电压、电流表,交流电压、电流表。屏上还设有定时器兼报警记录仪,供教师考核学生实验之用;在控制屏正面的大凹槽内,设有两根不锈钢管,可挂置实验所需挂件,凹槽底部设有12芯、10芯、4芯、3芯等插座,从这些插座提供有源挂件的电源;在控制屏两边设有单相三极220V电源插座及三相四极380V电源插座,此外还设有供实验台照明用的40W日光灯。

2-2 主控制屏面板图

1、三相电网电压指示

三相电网电压指示主要用于检测输入的电网电压是否有缺相的情况,操作交流电压表下面的切换开关,观测三相电网各线间电压是否平衡。

2、定时器兼报警记录仪

平时作为时钟使用,具有设定实验时间、定时报警和切断电源等功能,它还可以自动记录由于接线操作错误所导致的告警次数。

3、电源控制部分

它的主要功能是控制电源控制屏的各项功能,它由电源总开关、启动按钮及停止按钮组成。当打开电源总开关时,红灯亮;当按下启动按钮后,红灯灭,绿灯亮,此时控制屏的三相主电路及励磁电源都有电压输出。

4、三相主电路输出

三相主电路输出可提供三相交流200V/3A240V/3A电源。输出的电压大小由“调速电源选择开关”控制,当开关置于“直流调速”侧时,ABC输出线电压为200V,可完成电力电子实验以及直流调速实验;当开关置于“交流调速”侧时,ABC输出线电压为240V,可完成交流电机调压调速及串级调速等实验。在ABC三相电源输出附近装有黄、绿、红发光二极管,用以指示输出电压。同时在主电源输出回路中还装有电流互感器,电流互感器可测定主电源输出电流的大小,供电流反馈和过流保护使用,面板上的TA1TA2TA3三处观测点用于观测三路电流互感器输出电压信号。

5、励磁电源

在按下启动按钮后将励磁电源开关拨向“开”侧,则励磁电源输出为220V的直流电压,并有发光二极管指示输出是否正常,励磁电源由0.5A熔丝做短路保护,由于励磁电源的容量有限,仅为直流电机提供励磁电流,不能作为大容量的直流电源使用。

6、面板仪表

面板下部设置有±300V数字式直流电压表和±5A数字式直流电流表,精度为0.5级,能为可逆调速系统提供电压及电流指示;面板上部设置有500V真有效值交流电压表和5A真有效值交流电流表,精度为0.5级,供交流调速系统实验时使用。

2.2 各挂件功能介绍

2.2.1 DJK02挂件(三相变流桥路)

该挂件装有12只晶闸管、直流电压和电流表等,其面板如图2-3所示。

2-3 DJK02面板图

1、三相同步信号输出端

同步信号是从电源控制屏内获得,屏内装有/Y接法的三相同步变压器,和主电源输出保持同相,其输出相电压幅度为15V左右,供三相晶闸管触发电路(DJK02-1等挂件)使用,从而产生移相触发脉冲;只要将本挂件的12芯插头与屏相连接,则输出相位一一对应的三相同步电压信号

2、正、反桥脉冲输入端

从三相晶闸管触发电路(DJK02-1等挂件)来的正、反桥触发脉冲分别通过输入接口,加到相应的晶闸管电路上。

3、正、反桥钮子开关

从正、反桥脉冲输入端来的触发脉冲信号通过“正、反桥钮子开关”接至相应晶闸管的门极和阴极;面板上共设有十二个钮子开关,分为正、反桥两组,分别控制对应的晶闸管的触发脉冲;开关打到“通”侧,触发脉冲接到晶闸管的门极和阴极;开关打到“断”侧,触发脉冲被切断;通过关闭某几个钮子开关可以模拟晶闸管主电路失去触发脉冲的故障情况。

4、正、反桥主电路

正桥主电路和反桥主电路分别由六只5A/1000V晶闸管组成;其中由VT1VT6组成三相正桥元件(一般不可逆、可逆系统的正桥使用正桥元件);VT1ˊ~VT6ˊ组成三相反桥元件(可逆系统的反桥以及需单个或几个晶闸管的实验可使用反桥元件);所有这些晶闸管元件均配置有阻容吸收及快速熔断丝保护,此外正桥主电路还设有压敏电阻,其内部已经接成三角形接法,起过压吸收。

5电抗器

实验主回路中所使用的平波电抗器装在电源控制屏内,其各引出端通过12芯的插座连接到DJK02面板的中间位置,有3档电感量可供选择,分别为lOOmH2O0mH700mH(各档在1A电流下能保持线性),可根据实验需要选择合适的电感值。电抗器回路中串有3A熔丝保护,熔丝座装在控制屏内的电抗器旁。

6、直流电压表及直流电流表

面板上装有300V的带镜面直流电压表、2A的带镜面直流电流表,均为中零式,精度为1.0级,可逆调速系统提供电压及电流指示

2.2.2 DJK02-1挂件(三相晶闸管触发电路)

该挂件装有三相晶闸管触发电路和正反桥功放电路等,面板图如图2-4所示。

1、移相控制电压Uct输入及偏移电压Ub观测及调节

UctUb用于控制触发电路的移相角;在一般的情况下,我们首先将Uct接地,调节Ub,从而确定触发脉冲的初始位置;当初始触发角固定后,在以后的调节中只调节Uct的电压,这样能确保移相角始终不会大于初始位置,防止实验失败;如在逆变实验中初始移相角α=150o定下后,无论调节Uct,都能保证β>30O,防止在实验过程中出现逆变颠覆的情况。

2、触发脉冲指示

在触发脉冲指示处设有钮子开关用以控制触发电路,当开关拨到左边,绿色发光管亮,在触发脉冲观察孔处可观测到后沿固定、前沿可调的宽脉冲链;当开关拨到右边,红色发光管亮,触发电路产生双窄脉冲。

3.三相同步信号输入端

通过专用的十芯扁平线将DJK02上的“三相同步信号输出端”与DJK02-1“三相同步信号输入端”连接,为其内部的触发电路提供同步信号;同步信号也可以从其他地方提供,但要注意同步信号的幅度和相序问题;信号接口的详细情况详见附录相关内容。

4、锯齿波斜率调节与观测孔

由外接的三相同步信号经KC04集成触发电路,产生三路锯齿波信号,调节相应的斜率调节电位器,可改变相应的锯齿波斜率,三路锯齿波斜率在调节后应保证基本相同,使六路脉冲间隔基本保持一致,才能使主电路输出的整流波形整齐划一。

2-4 DJK02-1面板图

5、控制电路

其触发线路原理如图2-5所示。在由原KC04KC41KC42三相集成触发电路的基础上,又增加了40664069芯片,可产生三相六路互差60°的双窄脉冲或三相六路后沿固定、前沿可调的宽脉冲链,供触发晶闸管使用。

在面板上设有三相同步信号观测孔、两路触发脉冲观测孔。在触发脉冲指示为“窄脉冲”时,VT1VT6为单脉冲观测孔;VT1’VT6’为双脉冲观测孔。在触发脉冲指示为“脉冲”时,VT1VT6VT1’VT6’均为宽脉冲观测孔。

2-5 触发电路原理图

三相同步电压信号从三路KC04的“8脚输入,在其“4脚相应形成线性增加的锯齿波,移相控制电压Uct和偏移电压Ub经叠加后,从“9脚输入。当触发脉冲选择的钮子开关拨到窄脉冲侧时,通过控制4066(电子开关),使得每个KC04从“115脚输出相位相差180°的单窄脉冲(可在上面的VT1VT6脉冲观测孔观测到),窄脉冲经KC41(六路双脉冲形成器)后,得到六路双窄脉冲(可在下面的VT1’VT6’脉冲观测孔观测到)。将钮子开关拨到宽脉冲侧时,通过控制4066,使得KC04的“115脚输出宽脉冲,同时将KC41的控制端“7脚接高电平,使KC41停止工作,宽脉冲则通过4066的“39两脚直接输出。4069为反相器,它将部分控制信号反相,用以控制4066KC42为调制信号发生器,对窄脉冲和宽脉冲进行高频调制。具体有关KC04KC41KC42的内部电路原理图,请查阅附录中的相关内容。

6正、反桥功放电路

正、反桥功放电路的原理以正桥的一路为例,如图2-6所示;由晶闸管触发电路输出的脉冲信号经功放电路中的V2V3三极管放大后由脉冲变压器T1输出。Ulf即为DJKO2面板上的Ulf ,该点接地才可使V3工作,脉冲变压器输出脉冲;正桥共有六路功放电路,其余的五路电路完全与这一路一致;反桥功放和正桥功放线路完全一致,只是控制端不一样,将Ulf改为Ulr

7、正桥控制端Ulf及反桥控制端Ulr

这两个端子用于控制正反桥功放电路的工作与否,当端子与地短接,表示功放电路工作,触发电路产生的脉冲经功放电路最终输出;当端子悬空表示功放不工作;Ulf端子控制正桥功放,Ulr端子控制反桥功放。

8、正、反桥脉冲输出端

经功放电路放大的触发脉冲,通过专用的20芯扁平线将DJK02“正反桥脉冲输入端” DJK02-1上的“正反桥脉冲输出端”连接,为其晶闸管提供相应的触发脉冲。

2-6 功放电路原理图

2.2.3 DJK03-1挂件(晶闸管触发电路)

晶闸管装置的正常工作与其触发电路的正确、可靠的运行密切相关,门极触发电路必须按主电路的要求来设计,为了能可靠触发晶闸管应满足以下几点要求:

(1)触发脉冲应有足够的功率,触发脉冲的电压和电流应大于晶闸管要求的数值,并保留足够的裕量。

(2)为了实现变流电路输出的电压连续可调,触发脉冲的相位应能在一定的范围内连续可调。

(3)触发脉冲与晶闸管主电路电源必须同步,两者频率应该相同,而且要有固定的相位关系,使每一周期都能在同样的相位上触发。

(4)触发脉冲的波形要符合一定的要求。多数晶闸管电路要求触发脉冲的前沿要陡,以实现精确的导通控制。对于电感性负载,由于电感的存在,其回路中的电流不能突变,所以要求其触发脉冲要有一定的宽度,以确保主回路的电流在没有上升到晶闸管擎住电流之前,其门极与阴极始终有触发脉冲存在,保证电路可靠工作。

DJK03-1挂件是晶闸管触发电路专用实验挂箱,面板如图2-7所示。其中有单结晶体管触发电路、正弦波同步移相触发电路、锯齿波同步移相触发电路III,单相交流调压触发电路以及西门子TCA785集成触发电路。

2-7 DJK03-1面板图

1、单结晶体管触发电路

利用单结晶体管(又称双基极二极管)的负阻特性和RC的充放电特性,可组成频率可调的自激振荡电路,如图2-8所示。

图中V6为单结晶体管,其常用的型号有BT33BT35两种,由等效电阻V5C1组成RC充电回路,由C1-V6-脉冲变压器组成电容放电回路,调节RP1即可改变C1充电回路中的等效电阻。

2-8 单结晶体管触发电路原理图

工作原理简述如下:

由同步变压器副边输出60V的交流同步电压,经VD1半波整流,再由稳压管V1V2进行削波,从而得到梯形波电压,其过零点与电源电压的过零点同步,梯形波通过R7等效可变电阻V5向电容C1充电,当充电电压达到单结晶体管的峰值电压UP时,单结晶体管V6导通,电容通过脉冲变压器原边放电,脉冲变压器副边输出脉冲。同时由于放电时间常数很小,C1两端的电压很快下降到单结晶体管的谷点电压Uv,使V6关断,C1再次充电,周而复始,在电容C1两端呈现锯齿波形,在脉冲变压器副边输出尖脉冲。在一个梯形波周期内,V6可能导通、关断多次,但只有输出的第一个触发脉冲对晶闸管的触发时刻起作用。充电时间常数由电容C1和等效电阻等决定,调节RP1改变C1的充电的时间,控制第一个尖脉冲的出现时刻,实现脉冲的移相控制。单结晶体管触发电路的各点波形如图2-9所示。

电位器RP1已装在面板上,同步信号已在内部接好,所有的测试信号都在面板上引出。

2-9 单结晶体管触发电路各点的电压波形(α=900)

2、正弦波同步移相触发电路

正弦波同步移相触发电路由同步移相、脉冲放大等环节组成,其原理如图2-10所示。

同步信号由同步变压器副边提供,三极管V1左边部分为同步移相环节,在V1的基极综合了同步信号电压UT、偏移电压Ub及控制电压UctRP1电位器调节UctRP2调节Ub)。调节RP1RP2均可改变V1三极管的翻转时刻,从而控制触发角的位置。脉冲形成整形环节是一分立元件的集基耦合单稳态脉冲电路,V2的集电极耦合到V3的基极,V3的集电极通过C4RP3耦合到V2的基极。

V1未导通时,R6供给V2足够的基极电流使之饱和导通,V3截止。电源电压通过R9T1VD6V2C4充电至15V左右,极性为左负右正。

2-10 正弦波同步移相触发电路原理图

V1导通的时候,V1的集电极从高电位翻转为低电位,V2截止,V3导通,脉冲变压器输出脉冲。由于设置了C4RP3阻容正反馈电路,使V3加速导通,提高输出脉冲的前沿陡度。同时V3导通经正反馈耦合,V2的基极保持低电压,V2维持截止状态,电容通过RP3V3放电到零,再反向充电,当V2的基极升到0.7V后,V2从截止变为导通,V3从导通变为截止。V2的基极电位上升0.7V的时间由其充放电时间常数所决定,改变RP3的阻值就改变了其时间常数,也就改变了输出脉冲的宽度。

正弦波同步移相触发电路的各点电压波形如图2-11所示。

电位器RP1RP2RP3均已安装在面板上,同步变压器副边已在内部接好,所有的测试信号都在面板上引出。

2-11正弦波同步移相触发电路的各点电压波形(α=00)

3、锯齿波同步移相触发电路III

锯齿波同步移相触发电路III由同步检测、锯齿波形成、移相控制、脉冲形成、脉冲放大等环节组成,其原理图如图2-12所示。

2-12锯齿波同步移相触发电路I原理图

V3VD1VD2C1等元件组成同步检测环节,其作用是利用同步电压UT来控制锯齿波产生的时刻及锯齿波的宽度。由V1V2等元件组成的恒流源电路,当V3截止时,恒流源对C2充电形成锯齿波;当V3导通时,电容C2通过R4V3放电。调节电位器RP1可以调节恒流源的电流大小,从而改变了锯齿波的斜率。控制电压Uct、偏移电压Ub和锯齿波电压在V5基极综合叠加,从而构成移相控制环节,RP2RP3分别调节控制电压Uct和偏移电压Ub的大小。V6V7构成脉冲形成放大环节,C5为强触发电容改善脉冲的前沿,由脉冲变压器输出触发脉冲,电路的各点电压波形如图2-13所示。

本装置有两路锯齿波同步移相触发电路,III,在电路上完全一样,只是锯齿波触发电路II输出的触发脉冲相位与I恰好互差180O,供单相整流及逆变实验用。

电位器RP1RP2RP3均已安装在挂箱的面板上,同步变压器副边已在挂箱内部接好,所有的测试信号都在面板上引出。

2-13 锯齿波同步移相触发电路I各点电压波形(α=900)

4、单相交流调压触发电路

单相交流调压触发电路采用KCO5集成晶闸管移相触发器(KCO5的电路内部原理图见附录)。该集成触发器适用于触发双向晶闸管或两个反向并联晶闸管组成的交流调压电路,具有失交保护、输出电流大等优点,是交流调压的理想触发电路。单相交流调压触发电路原理图2-14所示。

2-14 单相交流调压触发电路原理图

同步电压由KC051516脚输入,在TP2点可以观测到锯齿波,RP1电位器调节锯齿波的斜率,RP2电位器调节移相角度,触发脉冲从第9脚,经脉冲变压器输出。

电位器RP1RP2均已安装在挂箱的面板上,同步变压器副边已在挂箱内部接好,所有的测试信号都在面板上引出。

5、西门子TCA785触发电路

教科书上讲述的晶闸管集成触发电路,如KC04KC05等,在目前工业现场很少使用了。

工业现场正在使用的新型晶闸管集成触发电路,主要有西门子TCA785,与KC04等相比它对零点的识别更加可靠,输出脉冲的齐整度更好,移相范围更宽;同时它输出脉冲的宽度可人为自由调节。

西门子TCA785外围电路如图2-15所示。

2-15 Tca785锯齿波移相触发电路原理图

锯齿波斜率由电位器RP1调节,RP2电位器调节晶闸管的触发角。

电位器RP1RP2已安装在挂箱的面板上,所有的测试信号都在面板上引出。

6.外接220V输入端

该挂件的电源及同步信号都是由+ zzX外接220V输入端提供的,注意的是输入的电压范围为220V±10%,如超过此范围会造成设备严重损坏

2.2.4 DJKO6挂件(给定及实验器件)

该挂件由给定、负载及+24V直流电源等组成。面板示意图如图2-16所示。

2-16 DJK06面板图

1、负载灯泡

作为电力电子实验中的电阻性负载。

2、给定

作为新器件特性实验中的给定电平触发信号,或提供DJK02-1等挂件的移相控制电压。输出电压范围-15V0V+15V。原理图详见图2-17

2-17 电压给定原理图

3二极管

提供四个二极管可作为普通的整流二极管,也可用做为晶闸管实验带电感性负载时所需续流二极管。在回路中有一个钮子开关对其进行通断控制。

注意由于该二极管工作频率不高,故不能将此二极管当快速恢复二极管使用,规格为:耐压800V,最大电流3A

4、压敏电阻

三个压敏电阻(规格为:3kA/510V)用于三相反桥主电路(逻辑无环流直流调速系统)的电源输入端,作为过电压保护,内部已连成三角形接法。

注意如果在DZSZ-1型上使用时,调节整流桥输入的电压时不可输入线电压>350V的交流电压,否则会造成压敏电阻损坏。

2.2.5 DJK10挂件(变压器实验)

该挂件由三相心式变压器以及三相不控整流桥组成。面板图如图2-18

1、三相心式变压器

在绕线式异步电机串级调速系统中作为逆变变压器使用,在三相桥式、单相桥式有源逆变电路实验中也要使用该挂箱。该变压器有2套副边绕组,原、副边绕组的相电压为127V/63.5V/31.8V(如果Y/Y/Y接法,则线电压为220V/110V/55V)

2、三相不控整流桥

由六只二极管组成桥式整流,最大电流3A。可用于三相桥式、单相桥式有源逆变电路及直流斩波原理等实验中的高压直流电源。

2-18 DJK10面板图

第三章 电力电子技术实验

实验一 单结晶体管触发电路实验

一、实验目的

(1)熟悉单结晶体管触发电路的工作原理及电路中各元件的作用。

(2)掌握单结晶体管触发电路的调试步骤和方法。

二、实验所需挂件及附件

三、实验线路及原理

单结晶体管触发电路的工作原理已在2.2节中作过介绍。

四、实验内容

(1)单结晶体管触发电路的调试。

(2)单结晶体管触发电路各点电压波形的观察。

五、预习要求

阅读本教材2.2节及电力电子技术教材中有关单结晶体管的内容,弄清单结晶体管触发电路的工作原理。

六、思考题

(1)单结晶体管触发电路的振荡频率与电路中C1的数值有什么关系?

(2)单结晶体管触发电路的移相范围能否达到180°?

七、实验方法

(1)单结晶体管触发电路的观测

DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V(不能打到“交流调速”侧工作,因为DJK03-1的正常工作电源电压为220V10%,而“交流调速”侧输出的线电压为240V。如果输入电压超出其标准工作范围,挂件的使用寿命将减少,甚至会导致挂件的损坏。),用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,这时挂件中所有的触发电路都开始工作,用双踪示波器观察单结晶体管触发电路,经半波整流后“1”点的波形,经稳压管削波得到“2”点的波形,调节移相电位器RP1,观察“4”点锯齿波的周期变化及“5”点的触发脉冲波形;最后观测输出的“GK”触发电压波形,其能否在30°~170°范围内移相?

(2)单结晶体管触发电路各点波形的记录

当α=30o60o90o120o时,将单结晶体管触发电路的各观测点波形描绘下来,并与图2-9的各波形进行比较。

八、实验报告

画出α=60°时,单结晶体管触发电路各点输出的波形及其幅值。

九、注意事项

双踪示波器有两个探头,可同时观测两路信号,但这两探头的地线都与示波器的外壳相连,所以两个探头的地线不能同时接在同一电路的不同电位的两个点上,否则这两点会通过示波器外壳发生电气短路。为此,为了保证测量的顺利进行,可将其中一根探头的地线取下或外包绝缘,只使用其中一路的地线,这样从根本上解决了这个问题。当需要同时观察两个信号时,必须在被测电路上找到这两个信号的公共点,将探头的地线接于此处,探头各接至被测信号,只有这样才能在示波器上同时观察到两个信号,而不发生意外。

实验二 单相半波可控整流电路实验

一、实验目的

(1)掌握单结晶体管触发电路的调试步骤和方法。

(2)掌握单相半波可控整流电路在电阻负载及电阻电感性负载时的工作。

(3)了解续流二极管的作用。

二、实验所需挂件及附件

三、实验线路及原理

单结晶体管触发电路的工作原理及线路图已在2.2节中作过介绍。将DJK03-1挂件上的单结晶体管触发电路的输出端“G”和“K”接到DJK02挂件面板上的反桥中的任意一个晶闸管的门极和阴极,并将相应的触发脉冲的钮子开关关闭(防止误触发),图中的R负载用D42三相可调电阻,将两个900Ω接成并联形式。二极管VD1和开关S1均在DJK06挂件上,电感LdDJK02面板上,有100mH200mH700mH三档可供选择,本实验中选用700mH。直流电压表及直流电流表从DJK02挂件上得到。

四、实验内容

(1)单结晶体管触发电路的调试。

(2)单结晶体管触发电路各点电压波形的观察并记录。

(3)单相半波整流电路带电阻性负载时Ud/U2= f(α)特性的测定。

(4)单相半波整流电路带电阻电感性负载时续流二极管作用的观察。

五、预习要求

(1)阅读电力电子技术教材中有关单结晶体管的内容,弄清单结晶体管触发电路的工作原理。

(2)复习单相半波可控整流电路的有关内容,掌握单相半波可控整流电路接电阻性负载和电阻电感性负载时的工作波形。

(3)掌握单相半波可控整流电路接不同负载时UdId的计算方法。

六、思考题

(1)单相半波可控整流电路接电感性负载时会出现什么现象?如何解决?

七、实验方法

(1)单结晶体管触发电路的调试

DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用双踪示波器观察单结晶体管触发电路中整流输出的梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。调节移相电位器RP1,观察锯齿波的周期变化及输出脉冲波形的移相范围能否在30°~170°范围内移动?

(2)单相半波可控整流电路接电阻性负载

触发电路调试正常后,按图3-1电路图接线。将电阻器调在最大阻值位置,按下“启动”按钮,用示波器观察负载电压Ud、晶闸管VT两端电压UVT的波形,调节电位器RP1,观察α =30°、60°、90°、120°、150°时UdUVT的波形,并测量直流输出电压Ud和电源电压U2,记录于下表中。

3-1 单相半波可控整流电路

  (3)单相半波可控整流电路接电阻电感性负载

将负载电阻R改成电阻电感性负载(由电阻器与平波电抗器Ld串联而成)。暂不接续流二极VD1,在不同阻抗角[阻抗角 φ=tg-1(ωL/R),保持电感量不变,改变R的电阻值,注意电流不要超过1A]情况下,观察并记录 α =30°、60°、90°、120°时的直流输出电压值UdUVT的波形。

接入续流二极管VD1,重复上述实验,观察续流二极管的作用,以及UVD1波形的变化。

计算公式: Ud = 0.45U2(lcosα)/2

八、实验报告

(1)画出α=90°时,电阻性负载和电阻电感性负载的UdUVT波形。

(2)画出电阻性负载时Ud/U2=f(α)的实验曲线,并与计算值Ud的对应曲线相比较。

(3)分析实验中出现的现象,写出体会。

九、注意事项

(1)参照实验一的注意事项。

(2)在实验中,触发脉冲是从外部接入DJKO2面板上晶闸管的门极和阴极,此时,应将所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的开关拨向“断”的位置,避免误触发。

(3)为避免晶闸管意外损坏,实验时要注意以下几点:

①首先要调试触发电路,只有触发电路工作正常后,才可以接通主电路。

②在接通主电路前,必须先将控制电压Uct调到零,且将负载电阻调到最大阻值处;接通主电路后,才可逐渐加大控制电压Uct,避免过流。

③要选择合适的负载电阻和电感,避免过流。在无法确定的情况下,应尽可能选用大的电阻值。

(5)由于晶闸管持续工作时,需要有一定的维持电流,故要使晶闸管主电路可靠工作,其通过的电流不能太小,否则可能会造成晶闸管时断时续,工作不可靠。在本实验装置中,要保证晶闸管正常工作,负载电流必须大于50mA以上。

(6)在实验中要注意同步电压与触发相位的关系。在单结晶体管触发电路中,触发脉冲产生的位置是在同步电压的上半周。

(7)使用电抗器时要注意其通过的电流不要超过1A,保证线性。

实验三 三相桥式全控整流及有源逆变电路实验

一、实验目的

(1)加深理解三相桥式全控整流及有源逆变电路的工作原理。

(2)了解KC系列集成触发器的调整方法和各点的波形。

实验所需挂件及附件

三、实验线路及原理

实验线路如图3-2及图3-3所示。主电路由三相全控整流电路及作为逆变直流电源的三相不控整流电路组成,触发电路为DJKO2-1中的集成触发电路,由KCO4KC4lKC42等集成芯片组成,可输出经高频调制后的双窄脉冲链。集成触发电路的原理可参考2.2节中的有关内容,三相桥式整流及逆变电路的工作原理可参见电力电子技术教材的有关内容。

在三相桥式有源逆变电路中,电阻、电感与整流的一致,而三相不控整流及心式变压器均在DJK10挂件上,其中心式变压器用作升压变压器,逆变输出的电压接心式变压器的中压端AmBmCm,返回电网的电压从高压端ABC输出,变压器接成Y/Y接法。

图中的R均使用D42三相可调电阻将两个900Ω接成并联形式;电感LdDJK02面板上,选用700mH,直流电压、电流表由DJK02获得。

四、实验内容

(1)三相桥式全控整流电路。

(2)三相桥式有源逆变电路。

(3)在整流或有源逆变状态下,当触发电路出现故障(人为模拟)时观测主电路的各电压波形。

五、预习要求

(1)阅读电力电子技术教材中有关三相桥式全控整流电路的有关内容。

(2)阅读电力电子技术教材中有关有源逆变电路的有关内容,掌握实现有源逆变的基本条件。

(3)学习本教材2.2节中有关集成触发电路的内容,掌握该触发电路的工作原理。

六、思考题

(1)如何解决主电路和触发电路的同步问题?在本实验中主电路三相电源的相序可任意设定吗?

(2)在本实验的整流及逆变时,对α角有什么要求?为什么?

3-2 三相桥式全控整流电路实验原理图

3-3 三相桥式有源逆变电路实验原理图

七、实验方法

(1)DJK02DJK02-1上的“触发电路”调试

①打开DJK01总电源开关,操作“电源控制屏”上的“三相电网电压指示”开关,观察输入的三相电网电压是否平衡。

②将DJK01“电源控制屏”上“调速电源选择开关”拨至“直流调速”侧。

③用10芯的扁平电缆,将DJK02三相同步信号输出端和DJK02-1“三相同步信号输入端相连,打开DJK02-1电源开关,拨动 “触发脉冲指示钮子开关,使的发光管亮。

④观察ABC三相的锯齿波,并调节ABC三相锯齿波斜率调节电位器(在各观测孔左侧),使三相锯齿波斜率尽可能一致。

⑤将DJK06上的“给定”输出Ug直接与DJK02-1上的移相控制电压Uct相接,将给定开关S2拨到接地位置(即Uct=0),调节DJK02-1上的偏移电压电位器,用双踪示波器观察A相同步电压信号和“双脉冲观察孔” VT1的输出波形,使α=150°(注意此处的α表示三相晶闸管电路中的移相角,它的0°是从自然换流点开始计算,前面实验中的单相晶闸管电路的0°移相角表示从同步信号过零点开始计算,两者存在相位差,前者比后者滞后30°)

⑥适当增加给定Ug的正电压输出,观测DJK02-1上“脉冲观察孔”的波形,此时应观测到单窄脉冲和双窄脉冲。

⑦用8芯的扁平电缆,将DJK02-1面板上“触发脉冲输出”和“触发脉冲输入”相连,使得触发脉冲加到正反桥功放的输入端。

⑧将DJK02-1面板上的Ulf端接地,用20芯的扁平电缆,将DJK02-1的“正桥触发脉冲输出”端和DJK02“正桥触发脉冲输入”端相连,并将DJK02“正桥触发脉冲”的六个开关拨至“通”,观察正桥VT1VT6晶闸管门极和阴极之间的触发脉冲是否正常。

(2)三相桥式全控整流电路

按图3-2接线,将DJK06上的 “给定”输出调到零(逆时针旋到底),使电阻器放在最大阻值处,按下“启动”按钮,调节给定电位器,增加移相电压,使α角在30°~150°范围内调节,同时,根据需要不断调整负载电阻R,使得负载电流Id保持在0.6A左右(注意Id不得超过0.65A)。用示波器观察并记录α=30°60°90°时的整流电压Ud和晶闸管两端电压Uvt的波形,并记录相应的Ud数值于下表中。

计算公式:Ud=2.34U2cosα (060O)

Ud=2.34U2[1+cos(a+)] (60o120o)

(3)三相桥式有源逆变电路

按图3-3接线,将DJK06上的 “给定”输出调到零(逆时针旋到底),将电阻器放在最大阻值处,按下“启动”按钮,调节给定电位器,增加移相电压,使β角在30°~90°范围内调节,同时,根据需要不断调整负载电阻R,使得电流Id保持在0.6A左右(注意Id不得超过0.65A)。用示波器观察并记录β=30°60°90°时的电压Ud和晶闸管两端电压UVT的波形,并记录相应的Ud数值于下表中。

计算公式:Ud=2.34U2cos(180O-β)

(4)故障现象的模拟

β=60°时,将触发脉冲钮子开关拨向“断开”位置,模拟晶闸管失去触发脉冲时的故障,观察并记录这时的UdUVT波形的变化情况。

八、实验报告

(1) 画出α=30°、60°、90°、120°、150°时的整流电压Ud和晶闸管两端电压UVT的波形。

(2) 简单分析模拟的故障现象。

九、注意事项

(1)可参考实验六的注意事项 (1)(2)

(2)为了防止过流,启动时将负载电阻R调至最大阻值位置。

(3)三相不控整流桥的输入端可加接三相自耦调压器,以降低逆变用直流电源的电压值。

(4)有时会发现脉冲的相位只能移动120°左右就消失了,这是因为AC两相的相位接反了,这对整流状态无影响,但在逆变时,由于调节范围只能到120°,使实验效果不明显,用户可自行将四芯插头内的AC相两相的导线对调,就能保证有足够的移相范围。

实验四 单相交流调压电路实验

一、实验目的

(1)加深理解单相交流调压电路的工作原理。

(2)加深理解单相交流调压电路带电感性负载对脉冲及移相范围的要求。

(3)了解KC05晶闸管移相触发器的原理和应用。

实验所需挂件及附件

三、实验线路及原理

本实验采用KCO5晶闸管集成移相触发器。该触发器适用于双向晶闸管或两个反向并联晶闸管电路的交流相位控制,具有锯齿波线性好、移相范围宽、控制方式简单、易于集中控制、有失交保护、输出电流大等优点。

单相晶闸管交流调压器的主电路由两个反向并联的晶闸管组成,如图3-4所示。

图中电阻RD42三相可调电阻将两个900Ω接成并联接法,晶闸管则利用DJK02上的反桥元件,交流电压、电流表由DJK01控制屏上得到,电抗器LdDJK02上得到,用700mH

3-4 单相交流调压主电路原理图

四、实验内容

(1)KC05集成移相触发电路的调试。

(2)单相交流调压电路带电阻性负载。

(3)单相交流调压电路带电阻电感性负载。

五、预习要求

(1)阅读电力电子技术教材中有关交流调压的内容,掌握交流调压的工作原理。

(2)学习本教材2.2节中有关单相交流调压触发电路的内容,了解KCO5晶闸管触发芯片的工作原理及在单相交流调压电路中的应用。

六、思考题

(1)交流调压在带电感性负载时可能会出现什么现象?为什么?如何解决?

(2)交流调压有哪些控制方式? 有哪些应用场合?

七、实验方法

(l)KCO5集成晶闸管移相触发电路调试

DJK01电源控制屏的电源选择开关打到“直流调速”侧使输出线电压为200V,用两根导线将200V交流电压接到DJK03的“外接220V”端,按下“启动”按钮,打开DJK03电源开关,用示波器观察“1”~“5”端及脉冲输出的波形。调节电位器RP1,观察锯齿波斜率是否变化,调节RP2,观察输出脉冲的移相范围如何变化,移相能否达到170°,记录上述过程中观察到的各点电压波形。

(2)单相交流调压带电阻性负载

DJKO2面板上的两个晶闸管反向并联而构成交流调压器,将触发器的输出脉冲端“G1”、“K1”、“G2”和“K2”分别接至主电路相应晶闸管的门极和阴极。接上电阻性负载,用示波器观察负载电压、晶闸管两端电压UvT的波形。调节“单相调压触发电路”上的电位器RP2,观察在不同α角时各点波形的变化,并记录α=30°60°、90°、120°时的波形。

(3)单相交流调压接电阻电感性负载

切断电源,将LR串联,改接为电阻电感性负载。按下“启动”按钮,用双踪示波器同时观察负载电压U1和负载电流I1的波形。调节R的数值,使阻抗角为一定值,观察在不同α角时波形的变化情况, 记录αφα= φ、αφ三种情况下负载两端的电压U1和流过负载的电流I1波形。注意:调整时不可过流

八、实验报告

(1)整理、画出实验中所记录的各类波形。

(2)分析电阻电感性负载时,α角与φ角相应关系的变化对调压器工作的影响。

(3)分析实验中出现的各种问题。

九、注意事项

(1)参见实验一的注意事项。

(2)在本实验中,触发脉冲是从外部接入DJKO2面板上晶闸管的门极和阴极,此时,应将所用晶闸管对应的正桥触发脉冲或反桥触发脉冲的开关拨向“断”的位置,并将UlfUlr悬空,避免误触发。

(3)可以用DJK02-1上的触发电路来触发晶闸管。

(4)由于“G”、“K“输出端有电容影响,故观察触发脉冲电压波形时,需将输出端“G”和“K”分别接到晶闸管的门极和阴极(或者也可用约100Ω左右阻值的电阻接到“G”、“K”两端,来模拟晶闸管门极与阴极的阻值),否则,无法观察到正确的脉冲波形。

本文来源:https://www.2haoxitong.net/k/doc/ac210213a216147917112825.html

《电力电子技术实验指导书2010.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式