[推荐]山东省山东师范大学附属中学2019届高三物理第五次模拟考试试卷及答案 doc

发布时间:2019-09-02 01:01:39   来源:文档文库   
字号:

山东省山东师范大学附属中学2019届高三物理第五次模拟考试试卷(含解析)

注意事项:

1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

I卷(选择题)

一、单选题

1.物理学家通过艰辛的实验和理论研究探究自然规律,为科学事业做出了巨大贡献.下列描述中符合物理学史实的是( )

A.奥斯特发现了电流的磁效应并提出了分子电流假说

B.法拉第发现了电磁感应现象并总结出了判断感应电流方向的规律

C.牛顿发现了万有引力定律但未给出引力常量G的数值

D.哥白尼大胆反驳地心说,提出了日心说,并发现行星沿椭圆轨道运行的规律

2.如图所示,物块A放在木板上处于静止状态,现将木块B略向右移动一些使倾角a减小,则下列结论正确的是( )

A.木板对A的作用力变小

B.木板对A的作用力不变

C.物块A与木板间的正压力减小

D.物块A所受的摩擦力不变

3.物体在变力F作用下沿水平方向做直线运动,物体质量m5kgF随坐标x的变化情况如图所示。若物体在坐标原点处由静止出发,不计一切摩擦。借鉴教科书中学习直线运动时由vt图象求位移的方法,结合其他所学知识,根据图示的Fx图象,可求出物体运动到x16 m处时,速度大小为( )

A4 m/s B2m/s C3 m/s D m/s

4.如图所示,一质量为M=2kg、倾角为θ=45°的斜面体放在光滑水平地面上,斜面上叠放一质量为m=1kg的光滑楔形物块,物块在水平恒力F作用下与斜面体一起恰好保持相对静止地向右运动。重力加速度为g=10m/s2。下列判断正确的是( )

A.物块对斜面的压力大小FN=5N

B.斜面体的加速度大小为a=10m/s2

C.水平恒力大小F=15N

D.若水平作用力F作用到M上系统仍保持相对静止,则F将变小

5.“天舟一号”飞船是中国空间技术研究院研制的第一艘货运飞船,20174201941分在海南文昌航天发射中心,由长征7号遥2运载火箭发射。421日上午,“天舟一号”货运飞船已经完成了两次的轨道控制,后来又进行了三次的轨道控制,使“天舟一号”货运飞船控制到“天宫二号”的后下方。4221223分,“天舟一号”货运飞船与离地面390公里处的“天宫二号”空间实验室顺利完成自动交会对接。下列说法正确的是(

A.根据“天宫二号”离地面的高度,可计算出地球的质量

B.“天舟一号”与“天宫二号”的对接过程,满足动量守恒、能量守恒

C.“天宫二号”飞越地球的质量密集区上空时,轨道半径和线速度都略微减小

D.若测得“天舟一号”环绕地球近地轨道的运行周期,可求出地球的密度

6.如图所示,物体AB的质量分别为m2m,物体B置于水平面上,B物体上部半圆型槽的半径为R,将物体A从圆槽的右侧最顶端由静止释放,一切摩擦均不计。则下列选项正确的是(

AA不能到达B圆槽的左侧最高点

BA运动到圆槽的最低点速度为

CB向右匀速运动

DB向右运动的最大位移大小为

7.如图所示,已知R1R40.5 Ω,r1Ω,R26 Ω,R3的最大阻值为6 Ω。在滑动变阻器R3的滑片K由最下端向最上端滑动过程中,下列说法不正确的是( )

A.定值电阻R4的功率、电源的总功率均减小

B.电源的输出功率变小

C.电源的效率先增大后减小

DMN并联部分的功率先增大后减小

8.如图所示为某电场中x轴上电势φx变化的图象,一个带电粒子仅受电场力作用在x=0处由静止释放沿x轴正向运动,且以一定的速度通过x=x2处,则下列说法正确的是( )

A.粒子从x=0x=x2过程中,电势能先增大后减小

B.粒子从x=0x=x2过程中,加速度先减小后增大

Cx1x2处的电场强度均为零

Dx1x2之间的场强方向不变

二、多选题

9.如图1所示,光滑的平行竖直金属导轨ABCD相距L,在AC之间接一个阻值为R的电阻,在两导轨间abcd矩形区域内有垂直导轨平面竖直向上、宽为5d的匀强磁场,磁感应强度为B,一质量为m、电阻为r、长度也刚好为L的导体棒放在磁场下边界ab上(与ab边重合),现用一个竖直向上的力F拉导体棒,使它由静止开始运动,已知导体棒离开磁场前已开始做匀速直线运动,导体棒与导轨始终垂直且保持良好接触,导轨电阻不计,F随导体棒与初始位置的距离x变化的情况如图2所示,下列判断正确的是(

A.导体棒离开磁场时速度大小为

B.导体棒经过磁场的过程中,通过电阻R的电荷量为

C.离开磁场时导体棒两端电压为

D.导体棒经过磁场的过程中,电阻R产生焦耳热为

10.如图所示,绝缘粗糙斜面体固定在水平地面上,斜面所在空间存在平行于斜面向上的匀强电场E,轻弹簧一端固定在斜面顶端,另一端拴接一不计质量的绝缘薄板。一带正电的小滑块,从斜面上的P点处由静止释放后,沿斜面向上运动,并能压缩弹簧至R(图中未标出),然后返回。则( )

A.滑块从P点运动到R点的过程中,其机械能增量等于电场力、弹簧弹力、摩擦力做功之和.

B.滑块从P点运动到R点的过程中,电势能的减小量大于重力势能和弹簧弹性势能的增加量之和.

C.滑块返回能到达的最低位置在P点;

D.滑块最终停下时,克服摩擦力所做的功等于电势能的减小量与重力势能增加量之差;

11.如图所示,正方形abcd区域内存在垂直纸面向里的匀强磁场,甲、乙两带电粒子从a点沿与ab30°角的方向垂直射入磁场。甲粒子垂直于bc边离开磁场,乙粒子从ad边的中点离开磁场。已知甲、乙两a带电粒子的电荷量之比为1:2,质量之比为1:2,不计粒子重力。以下判断正确的是( )

A.甲粒子带负电,乙粒子带正电

B.甲粒子的动能是乙粒子动能的24

C.甲粒子所受洛伦兹力是乙粒子所受洛伦兹力的2

D.甲粒子在磁场中的运动时间是乙粒子在磁场中运动时间的1/4

12.如图,将手摇交流发电机与一理想变压器的原线圈相连,副线圈电路中接有三个定值电阻、开关、灯泡及一个压敏电阻。压敏电阻具有这样的特点:只有加在它两端的电压大于某一值时,才会有电流通过。现将手摇发电机的手柄匀速转动,小灯泡周期性的闪亮,闭合开关后,小灯泡不再闪亮。下列说法正确的是( )

A.将滑动头P向下滑动,可能使灯泡继续闪亮,但闪亮频率变小

B.将滑动头P向上滑动,可能使灯泡继续闪亮,且闪亮频率不变

C.将滑动头P向上滑动,可能使灯泡继续闪亮,但闪亮频率变大

D.增大发电机手柄的转速,可能使灯泡继续闪亮,但闪亮频率变大

II卷(非选择题)

三、填空题

13.现用频闪照相方法来研究物块的变速运动.在一小物块沿斜面向下运动的过程中,用频闪相机拍摄的不同时刻物块的位置如图所示.拍摄时频闪频率是10 Hz,通过斜面上固定的刻度尺读取的5个连续影像间的距离依次为x1x2x3x4.已知斜面顶端的高度h和斜面的长度s.数据如下表所示.重力加速度大小g9.80 m/s2.

单位:cm

根据表中数据,完成下列填空:

(1)物块的加速度a________ m/s2(保留3位有效数字)

(2)因为________,可知斜面是粗糙的.

四、实验题

14.某同学用伏安法测量电阻Rx(约为100Ω)的阻值。准备的实验器材除了导线和开关外,还有下列器材:

A.电源(电动势E约为10V,内阻未知)

B.电流表A1(0~200mA,内阻r=10Ω)

C.电流表A2(0~300mA,内阻约为15Ω)

D.电阻箱R(最大阻值999.9Ω,符号)

E.滑动变阻器R1(010Ω,额定电流5A)

F.滑动变阻器R2(01kΩ,额定电流0.5A)

(1)由于准备的器材中没有电压表,需要用电流表改装一个量程为10V的电压表,应选电流表___________(填写器材前的字母序号),将选定的电流表与电阻箱_______(填“并联”或“串联”),并把电阻箱的阻值调至__________Ω。

(2)实验要求待测电阻两端的电压能够从零开始变化,滑动变阻器应选________(填写器材前的字母序号)

(3)在答题卡的虚线框内画出电路图,并标上所用器材的代号,要求尽量减小误差_____

(4)某一次实验读出电流表A1的示数I1=146mA,电流表A2的示数I2=218mA,待测电阻Rx=_____Ω (结果保留一位小数)

五、解答题

15.某运动员做跳伞训练,他从悬停在空中的直升机上由静止跳下,跳离直升机一段时间后打开降落伞减速下落,他打开降落伞后的速度-时间图象如图(a)所示。降落伞用8根对称的悬绳悬挂运动员,每根悬绳与中轴线的夹角为37°,如图(b)所示。已知运动员和降落伞的质量均为50 kg,不计运动员所受的阻力,打开降落伞后,降落伞所受的阻力f与下落速度v成正比,即fkv。重力加速度g10 m/s2sin 37°=0.6cos 37°=0.8。求:

(1)打开降落伞前运动员下落的高度;

(2)阻力系数k和打开降落伞瞬间的加速度;

(3)降落伞的悬绳能够承受的拉力至少为多少。

16.如图所示,质量M5.0 kg的小车以2.0 m/s的速度在光滑的水平面上向左运动,小车上AD部分是表面粗糙的水平轨道,DC部分是1/4光滑圆弧轨道,整个轨道都是由绝缘材料制成的,小车所在空间内有竖直向上的匀强电场和垂直于纸面向里的匀强磁场,电场强E大小为50 N/C,磁感应强度B大小为2.0 T。现有一质量m2.0 kg、带负电且电荷量为0.1 C的滑块以10 m/s 的水平速度向右冲上小车,当它运动到D点时速度为5 m/s。滑块可视为质点,g10 m/s2。求:

(1)求滑块从AD的过程中,小车与滑块组成的系统损失的机械能;

(2)如果滑块刚过D点时对轨道的压力为76 N,求圆弧轨道的半径r

(3)当滑块通过D点时,立即撤去磁场,要使滑块冲出圆弧轨道,求此圆弧轨道的最大半径。

17.如图所示,两根水平放置的平行金属导轨,其末端连接等宽的四分之一圆弧导轨,圆弧半径r0.41 m。导轨的间距为L0.5 m,导轨的电阻与摩擦均不计。在导轨的顶端接有阻值为R11.5 Ω的电阻,整个装置处在竖直向上的匀强磁场中,磁感应强度B2.0 T。现有一根长度稍大于L、电阻R20.5 Ω、质量m1.0 kg的金属棒。金属棒在水平拉力F作用下,从图中位置ef由静止开始匀加速运动,在t0 时刻,F01.5 N,经2.0 s运动到cd时撤去拉力,棒刚好能冲到最高点ab,重力加速度g10 m/s2。求:

(1)金属棒运动到cd时电压表的读数;

(2)金属棒从cd运动到ab过程中电阻R1上产生的焦耳热。

18.如图所示的xoy坐标系中,在第Ⅰ象限内存在沿y轴负向的匀强电场,第IV象限内存在垂直纸面向外的匀强磁场。一质量为m、电荷量为q的带正电粒子,从y轴上的P点垂直进入匀强电场,经过x轴上的Q点以速度可进入磁场,方向与x轴正向成30°。若粒子在磁场中运动后恰好能再回到电场,已知=3L,粒子的重力不计,电场强度E和磁感应强度B大小均未知。求:

1OP的距离;

2)磁感应强度B的大小;

3)若在O点右侧2L处放置一平行于y轴的挡板,粒子能击中挡板并被吸收,求粒子从P点进入电场到击中挡板的时间


2019届山东省山东师范大学附属中学高三

第五次模拟考试物理试题

物理答案

1C

【解析】

奥斯特发现了电流的磁效应,安培并提出了分子电流假说,选项A错误;法拉第发现了电磁感应现象,楞次总结出了判断感应电流方向的规律,选项B错误;牛顿发现了万有引力定律但未给出引力常量G的数值,后来卡文迪许用扭秤实验测出了引力常数,选项C正确;哥白尼大胆反驳地心说,提出了日心说,开普勒发现行星沿椭圆轨道运行的规律,选项D错误;故选C.

2B

【解析】

根据平衡条件分析木板对A的作用力;要求支持力和摩擦力如何变化,需要对物体进行受力分析,然后通过正交分解求出重力的沿木板方向和垂直木板方向的分力,再根据物体处于平衡状态求出支持力和摩擦力的表达式,最后根据倾角的变化判断出支持力和摩擦力的变化情况。

将木块B略向右移动一些,使倾角α减小,重力沿斜面方向的分力减小,一定能保持静止状态。由于A仍处于静止状态,受力平衡,所以木板对A的作用力始终等于A的重力,不变,故A错误,B正确;对物体A进行受力分析可知物体受竖直向下的重力mg,垂直木板向上的支持力N,沿木板向上的静摩擦力f,由于物体始终处于静止状态,故垂直木板方向合力为零,所以N=mgcosα;在沿斜面方向有:f=mgsinα,由题意可知α逐渐减小,故N逐渐增大,f逐渐减小,故CD错误。故选B

【点睛】

本类题目的解题步骤:确定研究对象,对研究对象进行受力分析,再进行正交分解,最后根据受力平衡写出所求力的数学表达式,从而可以根据角度的变化情况判断出力的变化情况。

3A

【解析】

F-x图线与x轴围成的面积表示力F所做的功,根据动能定理求出求出物体运动到x=16m处时的速度大小.

F-x图线与x轴围成的面积表示力F所做的功,则这段过程中,外力做功W=×(4+8)×10×4×10=40J。根据动能定理得,W=mv2,解得v=4m/s,故A正确。故选A

【点睛】

解决本题的关键知道F-x图线与x轴围成的面积表示力F所做的功,结合动能定理进行求解.

4C

【解析】

先对Mm整体分析,根据牛顿第二定律列式;再对M分析,根据牛顿第二定律列式;最后联立求解即可。

Mm整体分析,受重力、支持力和推力,根据牛顿第二定律,有:水平方向:F=M+ma;竖直方向:N=M+mg;再对M分析,受重力、压力N1、支持力,根据牛顿第二定律,有:水平方向:N1sinθ=Ma;竖直方向:N1cosθ+Mg=N;联立解得: C正确,AB错误;若水平作用力F作用到M上系统仍保持相对静止,则对整体:F=M+ma′;对mmgtan45°=ma′,解得F=M+mg=30N,即F变大,故D错误。故选C

【点睛】

本题关键是采用整体法和隔离法灵活选择研究对象,受力分析后根据平衡条件并结合正交分解法列式后联立求解.

5D

【解析】

根据,可得,则根据“天宫二号”离地面的高度,不可计算出地球的质量,选项A错误;“天舟一号”与“天宫二号”的对接时,“天舟一号”要向后喷气加速才能对接,故对接的过程不满足动量守恒,但是能量守恒,选项B错误;天宫二号”飞越地球的质量密集区上空时,万有引力变大,则轨道半径略微减小,引力做正功,故线速度增加,选项C错误;,而,可得,即若测得“天舟一号”环绕地球近地轨道的运行周期,可求出地球的密度,选项D正确;故选D.

点睛:解决本题的关键掌握万有引力提供向心力这一理论,知道线速度与轨道半径的关系,并能根据这个关系计算中心天体的质量.

6D

【解析】

物体AB组成的系统在水平方向上动量守恒,当A到达左侧的最高点时,水平方向上的速度相等,竖直方向上的速度为零,根据动量守恒定律和能量守恒定律求出A上升的最大高度以及到达最低点的速度.当A运动到左侧最高点时,B向右的位移最大,根据动量守恒定律求出最大位移的大小.

A到达左侧最高点的速度为v,根据动量守恒定律知,由于初动量为零,则末总动量为零,即v=0,根据能量守恒定律知,A能到达B圆槽左侧的最高点。故A错误。设A到达最低点时的速度为v,根据动量守恒定律得:0=mv-2mv′,解得:v′=,根据能量守恒定律得:mgRmv2+•2m()2,解得:.故B错误。因为AB组成的系统在水平方向上动量守恒,当A在水平方向上的速度向左时,B的速度向右,当A在水平方向上的速度向右时,则B的速度向左。故C错误。因为AB组成的系统在水平方向上动量守恒,当A运动到左侧最高点时,B向右运动的位移最大,设B向右的最大位移为x,根据动量守恒定律得:m2R-x=2mx,解得:x=R.故D正确。故选D

【点睛】

本题考查了动量守恒定律和能量守恒定律的综合,知道AB组成的系统在水平方向上动量守恒,当A到达左侧的最高点时,B向右的位移最大.

7C

【解析】

在滑动变阻器R3的滑片K由最下端向最上端滑动过程中,滑动变阻器的电阻变大,总电阻变大,总电流减小,则根据P4=I2R4可知定值电阻R4的功率减小,根据P=IE可知电源的总功率减小,选项A正确;因当外电路电阻等于电源内阻时电源输出功率最大,而R1+R4=r,则当变阻器电阻变大时,外电路电阻远离电源内阻,则电源的输出功率减小,选项B正确;电源的效率 ,则当外电路电阻R变大时,电源的效率变大,选项C错误;若将R1+R4等效为电源的内阻,则此时等效电源内阻为r=2Ω;滑动变阻器R3的滑片K由最下端向最上端滑动过程中,MN之间的电阻从0增加到3Ω,则因当外电路电阻等于电源内阻时电源输出功率最大,可知当MN之间的电阻等于2Ω时,MN之间的功率最大,则在滑动变阻器R3的滑片K由最下端向最上端滑动过程中,MN并联部分的功率先增大后减小,选项D正确;此题选择不正确的选项,故选C.

【点睛】

此题是动态电路的分析问题;关键是知道当外电路电阻等于电源内阻时电源输出功率最大,并且会将电路进行必要的等效,再进行分析.

8B

【解析】

粒子由x=0处由静止沿x轴正向运动,表明粒子运动方向与电场力方向同向,电场力先做正功后做负功,电势能先减小后增大,故A错误;由图线的切线斜率可知,从x=0x=x2过程中电场强度先减小后增大,粒子所受的电场力先减小后增大,因此粒子的加速度先减小后增大,故B正确。φ-x图象的切线斜率越大,则场强越大,可知,x1x2处的电场强度均不为零,故C错误;由切线斜率的正负可知,x1x2之间的场强方向先沿x轴负方向后沿x轴正方向,故D错误;故选B

【点睛】

解决本题的关键要明确φ-x图象的切线斜率表示场强,斜率的符号表示场强的方向,要知道电势的高低与电场方向的关系以及电场力做功与电势能的关系。

9ACD

【解析】

设导体棒离开磁场时速度大小为v.此时导体棒受到的安培力大小为:;由平衡条件得:F=F+mg;由图2知:F=3mg;联立解得:.故A正确.导体棒经过磁场的过程中,通过电阻R的电荷量为:.故B错误.离开磁场时,由F=BIL+mg得:;导体棒两端电压为:.故C正确.导体棒经过磁场的过程中,设回路产生的总焦耳热为Q.根据功能关系可得:Q=WF-mg•5d-mv2

而拉力做功为:WF=2mgd+3mg•4d=14mgd

电阻R产生焦耳热为:联立解得:.故D正确.

故选ACD

考点:法拉第电磁感应定律;能量守恒定律

【名师点睛】

本题是电磁感应与力学知识的综合应用,对于这类问题一定要正确分析安培力的大小和方向,要掌握安培力经验公式,能正确分析能量是转化的,运用能量守恒定律求焦耳热。

10AB

【解析】

先对滑块进行受力分析,然后结合滑块的运动分析各个力做功的情况,以及能量转化的方式,即可得出正确的结论.

由题可知,小滑块从斜面上的P点处由静止释放后,沿斜面向上运动,说明小滑块开始时受到的合力的方向向上,开始时小滑块受到重力、电场力、斜面的支持力和摩擦力的作用;小滑块开始压缩弹簧后,还受到弹簧的弹力的作用。小滑块向上运动的过程中,斜面的支持力不做功,电场力做正功,重力做负功,摩擦力做负功,弹簧的弹力做负功。在小滑块开始运动到到达R点的过程中,电场力做的功转化为小滑块的重力势能、弹簧的弹性势能以及内能。由以上的分析可知,滑块从P点运动到R点的过程中,其机械能增量等于电场力与弹簧弹力做功、摩擦力做功之和。故A正确;由以上的分析可知,电场力做的功转化为小滑块的重力势能、弹簧的弹性势能以及内能,所以电势能的减小量大于重力势能和弹簧弹性势能的增加量之和。故B正确;小滑块运动的过程中,由于摩擦力做功,小滑块的机械能与电势能的和逐渐减小,所以滑块返回能到达的最低位置在P点的上方,不能再返回P点。故C错误;滑块运动的过程中,由于摩擦力做功,小滑块的机械能与电势能的和逐渐减小,所以滑块最终停下时,克服摩擦力所做的功等于电势能的减小量与重力势能增加量、弹性势能增加量之差。故D错误。故选AB

【点睛】

题中,小滑块的运动的过程相对是比较简单的,只是小滑块运动的过程中,对小滑块做功的力比较多,要逐个分析清楚,不能有漏掉的功,特别是摩擦力的功.

11BCD

【解析】

根据粒子运动轨迹,应用左手定则可以判断出粒子的电性;粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,根据题意求出粒子轨道半径关系,然后应用牛顿第二定律求出粒子的速度然后分析答题;根据粒子做圆周运动的周期公式与粒子转过的圆心角求出粒子的运动时间。

由甲粒子垂直于bc边离开磁场可知,甲粒子向上偏转,所以甲粒子带正电,由粒子从ad边的中点离开磁场可知,乙粒子向下偏转,所以乙粒子带负电,故A错误;由几何关系可知,R=2L,乙粒子在磁场中偏转的弦切角为60°,弦长为,所以:=2Rsin60°,解得:R=L,由牛顿第二定律得:qvB=m,动能:EK=mv2=,所以甲粒子的动能是乙粒子动能的24倍,故B正确;由牛顿第二定律得:qvB=m,解得:,洛伦兹力:f=qvB=,即,故C正确;由几何关系可知,甲粒子的圆心角为300,由B分析可得,乙粒子的圆心角为120°,粒子在磁场中的运动时间:t=T,粒子做圆周运动的周期: 可知,甲粒子在磁场中的运动时间是乙粒子在磁场中运动时间的1/4倍,故D正确;故选D。故选BCD.

【点睛】

题考查带电粒子在匀强磁场中的运动,要掌握住半径公式、周期公式,画出粒子的运动轨迹后,利用洛伦兹力提供向心力,结合几何关系进行求解;运用粒子在磁场中转过的圆心角,结合周期公式,求解粒子在磁场中运动的时间。

12BD

【解析】

根据变压器原理结合滑动变阻器的移动情况确定输出电压的变化情况;根据发动机输出电压最大值的表达式分析转速增大时产生的交流电的频率和电压的变化,由此分析灯泡亮度的变化。

将滑动头P向上滑动,根据变压器原理可得副线圈匝数增加则输出电压增大,可能使灯泡继续闪亮,变压器变压不变频,所以灯泡闪亮频率不变,故B正确、C错误;将滑动头P向下滑动,根据变压器原理可得副线圈匝数减小则输出电压减小,不可能使灯泡继续闪亮,故A错误;增大发电机手柄的转速,则交流电的频率增大,根据Em=NBSω=NBS•2πf可知发电机输出电压变大,根据变压器原理可知副线圈两端电压增大,可能使灯泡继续闪亮,但闪亮频率变大,故D正确。故选BD

【点睛】

本题主要是考查了变压器的知识;解答本题的关键是知道变压器的电压之比等于匝数之比,在只有一个副线圈的情况下的电流之比等于匝数的反比;知道理想变压器的输出功率决定输入功率且相等。原线圈的电压决定副线圈的电压;理想变压器在改变电压和电流的同时,不改变功率和频率。

13.(14.30 2)物块加速度小于g 5.88 m/s2

【解析】

(1)根据逐差法求出加速度a 4.30 m/s2.

(2)根据牛顿第二定律,物块沿光滑斜面下滑的加速度a′=gsin θg5.88 m/s2,由于aa′,可知斜面是粗糙的.

14.(1B;串联;40 2E 3)如图所示: 4101.4

【解析】

1)选择内阻确切已知的电流表作为改装的表用,根据电表的改装原理结合欧姆定律即可分析求解;(2)因为要求待测电阻两端的电压能够从零开始变化,故选择分压式电路,在保证安全的前提下,为方便实验操作,应选最大阻值较小的滑动变阻器;(3)合理选择内外接,作出实验电路图。(4)根据欧姆定律结合串并联电路特点,即可计算出待测电阻Rx

【详解】

1)改装用的电流表内阻必须确定,故选择B,改装电压表需要将电流表与电阻箱串联,改装电压表的量程:Umax=10V,电流表的内阻:r=10Ω,满偏电流:I1=200mA=0.2A;根据欧姆定律可得:Umax=I1r+R=10V;可得电阻箱的阻值:R=40Ω。

2)实验要求待测电阻两端的电压能够从零开始变化,故选择分压式电路,滑动变阻器应选最大阻值较小的E

3)因为改装后的电压表内阻已知,故选择将电流表A2外接,故画出电路图,如图所示:

4)电流表A1的示数I1=146mA=0.146A,电流表A2的示数I2=218mA=0.218A,根据欧姆定律结合串并联电路特点可得:

【点睛】

本题考查了实验器材选择、实验电路设计、实验数据处理,要掌握实验器材的选择原则,认真审题、理解题意与实验步骤、知道实验原理是解题的关键。

15.(120m 230 m/s2,方向竖直向上 3312.5 N

【解析】

1)根据速度位移公式求出打开降落伞前人下落的高度。(2)抓住平衡,根据kv=m1+m2g求出阻力系数,根据牛顿第二定律求出加速度的大小。(3)对人分析,根据牛顿第二定律求出拉力的大小。

【详解】

1)打开降落伞前运动员做自由落体运动,根据速度位移公式可得运动员下落的高度为:h,由题图(a)可知:v0=20m/s解得:h=20m

2)由题图(a)可知,当速度为v=5 m/s时,运动员做匀速运动,受力达到平衡状态,由平衡条件可得:kv=2mg ,解得:k=200 N•s/m

在打开降落伞瞬间,由牛顿第二定律可得:kv0-2mg=2ma,解得:a=30 m/s2,方向竖直向上。

3)根据题意可知,打开降落伞瞬间悬绳对运动员拉力最大,设此时降落伞上每根悬绳的拉力为T,以运动员为研究对象,则有:8Tcos 37°-mg=ma,代入数据可解得:T=312.5 N,故悬绳能够承受的拉力至少为312.5 N

【点睛】

本题考查了共点力平衡和牛顿第二定律的基本运用,关键合理地选择研究的对象,运用牛顿第二定律进行求解。

16(1)85 J (2)1 m (3)5/70.71 m

【解析】

1)滑块从AD的过程中,小车、滑块系统水平方向不受外力,水平方向动量守恒,可求出滑块到达D点时车的速度,系统损失的机械能等于系统动能的减小。(2)滑块通过D时受到重力、支持力、电场力和洛伦兹力,沿半径方向的合力提供向心力,根据牛顿第三定律说明压力大小等于支持力大小,然后写出动力学方程即可求出轨道半径;(3)要使滑块不冲出圆弧轨道,滑块沿圆弧轨道上升到最大高度时,滑块与小车具有共同速度v,根据动量守恒定律和能量的转化与守恒定律求得结果。

【详解】

1)设滑块运动到D点时的速度大小为v1,小车在此时的速度大小为v2,滑块从A运动到D的过程中系统动量守恒,以向右为正方向,有:mv0-Mv=mv1+Mv2代入数据解得v2=0,则小车跟滑块组成的系统的初机械能E1=mv02+Mv2

小车跟滑块组成的系统的末机械能E2=mv12+0代入数据解得:E1=110JE2=25J

小车与滑块组成的系统损失的机械能△E=E1-E2代入数据解得:△E=85J

2)设滑块刚过D点时,受到轨道的支持力为N,则由牛顿第三定律可得N=76N

由牛顿第二定律可得N-(mg+qE+Bqv1)=m代入数据解得:r=1m

3)设滑块沿圆弧轨道上升到最大高度时,滑块与小车具有共同的速度v3

则由动量守恒定律可得mv1=M+mv3代入数据解得:v3=m/s

设圆弧轨道的最大半径为R,则由能量守恒关系,有:mv12=(M+m)v32+(qE+mg)R代入数据解得:R=0.71m

【点睛】

本题是系统动量守恒和能量守恒的类型,寻找解题规律是关键。容易出错的地方,是不认真分析滑块运动过程,认为滑块刚到达D时车的速度就最大。对于计算轨道半径问题比较中规中矩,牢记指向圆心的合外力大小等于跟速度有关的向心力公式便可。上升到最大高度需要思考什么时候最大高度,即竖直方向的速度为0,而物块不能离开小车,即滑块与小车的水平方向相同从而进行解题。整体题目算经典的曲面小车问题放在复合场中的处理。

17(1)2.25 V (2)0.3 J

【解析】

1)根据牛顿第二定律求棒匀加速直线运动的加速度;根据运动学公式求出金属棒运动到cd时的速度,求出感应电动势和感应电流,由欧姆定律求出电阻R1两端的电压即电压表的读数;(2)根据能量守恒定律求出回路产生的总焦耳热,再求出R1上产生的焦耳热。

【详解】

1)根据题意,金属棒从ef位置开始匀加速运动,根据牛顿第二定律,有F0ma解得:

金属棒运动到cd时的速度v=at=1.5×2.0m/s=3m/s

感应电动势E=BLv=2×0.5×3V=3V

感应电流

电压表的读数UIR11.5×1.52.25V

2)根据能量守恒定律,有:mv2mgr+Q代入数据:×1.0×331.0×10×0.41+Q解得:Q=0.4J

电阻R1上产生的焦耳热为

【点睛】

此题为一道综合题,牵涉知识点较多,明确求电动势、安培力、焦耳热的方法是解题的关键,灵活利用法拉第电磁感应定律和能量守恒的结论是解题的捷径.

18.(1 2 3

【解析】

1)粒子在Q点进入磁场时

粒子从P点运动到Q点时间

OP间距离

2)粒子恰好能回到电场,即粒子在磁场中轨迹的左侧恰好与y轴相切,设半径为R

可得

3)粒子在电场和磁场中做周期性运动,轨迹如图

一个周期运动过程中,在x轴上发生的距离为

P点到挡板的距离为22L,所以粒子能完成5个周期的运动,然后在电场中沿x轴运动2L时击中挡板。

5个周期的运动中,在电场中的时间为

磁场中运动的时间

剩余2L中的运动时间

总时间

考点:带电粒子在匀强电场及在磁场中的运动.

Word文档,精心制作,可任意编辑

本文来源:https://www.2haoxitong.net/k/doc/6dfb890c3086bceb19e8b8f67c1cfad6185fe949.html

《[推荐]山东省山东师范大学附属中学2019届高三物理第五次模拟考试试卷及答案 doc.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式