超声波的应用

发布时间:2013-05-03 23:32:47   来源:文档文库   
字号:

超声波的应用

声波是一种机械波。声的发生是由于发声体的机械振动,引起周围弹性介质中质点的振动由近及远的传播,这就是声波。人耳所能听闻的声波其频率在2020000Hz之间,频率在2020000Hz以外的声波不能引起声音的感觉。频率超过20000Hz的叫做超声波,频率低于20Hz的叫做次声波。超声波的频率可以高达911Hz,而次声波的频率可以低达9-8Hz
总的来说与可闻波相比,超声波由于频率高、波长短,在传播过程中具有三个其特有的性质,方向性好,能量大,穿透能力强。它的应用就是按照它的特点展开的。

1.超声波传感器

在流量测量时,许多仪器及控制应用中均涉及到超声波传感器,广义上来讲,它是在超声频率范围内将交变的电信号转换成声信号或者将外界声场中的声信号转换为电信号的能量转换器件,又称为超声波换能器或者超声波探头。

超声波传感器分为发射换能器和接收换能器,既能发射超声波又能接受发射出去的超声波的回波。发射换能器利用压电元件的逆压电效应,而接收换能器则是利用压电效应。超声换能器的种类很多按照实现超声换能器机电转换的物理效应的不同可将换能器分为电动式、电磁式、磁致式、压电式和电致伸缩式等。

2.超声波测距

超声波因其指向性强,能量消耗缓慢,在介质中传播距离远等特点,而经常用于进行各种测量。如利用超声波在水中的发射,可以测量水深、液位等.利用超声波测距,使用单片机系统,设计合理,计算处理也较方便,测量精度能达到各种场合使用的要求。

超声波测距的原理是利用超声波在空气中的传播速度为已知,测量声波在发射后遇到障碍物反射回来的时间,根据发射和接收的时间差计算出发射点到障碍物的实际距离。由此可见,超声波测距原理与雷达原理是一样的。

超声波测距主要应用于倒车提醒、建筑工地、工业现场等的距离测量,虽然目前的测距量程上能达到百米,但测量的精度往往只能达到厘米数量级。

由于超声波易于定向发射、方向性好、强度易控制、与被测量物体不需要直接接触的优点,是作为液体高度测量的理想手段。

3.超声波测量流量

超声波流量计是近十几年来随着集成电路技术迅速发展才开始应用的一种非接触式仪表,适于测量不易接触和观察的流体以及大管径流量。使用超声波流量比不用在流体中安装测量元件故不会改变流体的流动状态,不产生附加阻力,仪表的安装及检修均可不影响生产管线运行因而是一种理想的节能型流量计。

目前的工业流量测量普遍存在着大管径、大流量测量困难的问题,这是因为一般流量计随着测量管径的增大会带来制造和运输上的困难,造价提高、能损加大、安装不便这些缺点,但超声波流量计均可避免。

另外,超声测量仪表的流量测量准确度几乎不受被测流体温度、压力、粘度、密度等参数的影响,又可制成非接触及便携式测量仪表,故可解决其它类型仪表所难以测量的强腐蚀性、非导电性、放射性及易燃易爆介质的流量测量问题。超声波流量计具有上述一些优点因此它越来越受到重视并且向产品系列化、通用化发展,现已制成不同声道的标准型、高温型、防爆型、湿式型仪表以适应不同介质,不同场合和不同管道条件的流量测量。

超声波流量计目前所存在的缺点主要是可测流体的温度范围受超声波换能器及换能器与管道之间的耦合材料耐温程度的限制,以及高温下被测流体传声速度的原始数据不全。

利用声学多普勒效应,通过测量不均匀流体中散射体散射的超声波多普勒频移来确定流体流量的,适用于含悬浮颗粒、气泡等流体流量测量。相关法是利用相关技术测量流量,原理上,此法的测量准确度与流体中的声速无关,因而与流体温度,浓度等无关,因而测量准确度高,适用范围广。但相关器件价格贵,线路比较复杂。在微处理机普及应用后,这个缺点可以克服。噪声法(听音法)是利用管道内流体流动时产生的噪声与流体的流速有关的原理,通过检测噪声表示流速或流量值。其方法简单,设备价格便宜,但准确度低。

4.超声清洗

超声波在液体中传播能够形成空化作用,用来清洗物件特别实用。

超声波清洗主要是利用超声波在液体中的空化作用。超声波在液体传播过程中,当其声波压强达到一个大气压时,在液体中传播的超声波的声波压强峰值在液体中会产生一个很大的力,将液体拉裂成空洞,此空洞为真空或非常接近真空。在信号电压值(或超声波压强)下一个半周达到最大时,由于周围的压力的增大而被压碎,这些无数细小而密集的气泡破裂时产生冲击波的现象被称之为空化作用,空化泡崩溃时,在极短的时间和极小的空间内,形成局部热点,可产生高温和高压,并伴随有强烈的冲击波和时速射流。在此作用下,液体分子激烈碰撞产生非常强大的冲击力,将被清洗物体表面的污物撞击下来。空化作用也在固体与液体的交界处产生一种剪切力,也使污垢脱落,因而两种力的作用下,对于浸入超声波作用下的液体中的物体外表面具有超乎寻常的清洗作用。另外,由于超声波具有很强的穿透固体的作用,所以这种空化作用对浸入超声波作用下的液体中物体(如管件)内表面也能得到一定程度的清洗,这是超声波清洗优于其它清洗手段的重要方面。

超声波频率越低,在液体中产生空化越容易,作用也越强。频率高则超声波方向性强,适合于精细物体的清洗。超声波的功率密度越高,空化效果越强,速度越快,清洗效果越好。但对于精密的、表面光洁度甚高的工件,采用长时间的高功率密度清洗会对物体表面产生空化腐蚀。

一般来说,超声波在30℃~40℃时空化效果最好。实际应用超声波清洗时,采用40℃~60℃的工作温度。因为将清洗物置于驻波压力最大的位置,可获得最佳的清洗效果,所以工件在清洗槽内上下、左右缓慢的摆动,则清洗越均匀、彻底,清洗效果越好。

5.超声波在军事中的应用

在军事中主要运用超声波方向性好的特性。由于超声波基本上是沿直线传播的,可以定向发射,如果渔船载有水下超声波发生器,它旋转着向各个方向发射超声波,当超声波遇到鱼群时会反射回来,渔船探测到反射波就知道鱼群的位置了,这种仪器叫声纳。它也可以用来探测水中的暗礁和敌人的潜艇以及测量海水的深度。声纳技术在特殊领域中占有不可取代的地位。

6.超声波在医疗的应用

医学超声波检查的工作原理与声纳有一定的相似性,即将超声波发射到人体内,当它在体内遇到界面时会发生反射及折射,并且在人体组织中可能被吸收而衰减。因为人体各种组织的形态与结构是不相同的,因此其反射与折射以及吸收超声波的程度也就不同,医生们正是通过仪器所反映出的波型、曲线,或影象的特征来辨别它们。此外再结合解剖学知识、正常与病理的改变,便可诊断所检查的器官是否有病。

超声学是一门应用性和边缘性很强的学科,随着它在国防、工农业生产、医学、基础研究等领域中应用的不断深入而得到发展的。它不断借鉴电子学、材料科学、光学、固体物理等其他学科的内容,而使自己更加丰富。同时,超声学的发展又为这些学科的发展提供了一些重要器件和行之有效的研究手段。如超声探伤和超声成像技术都是借鉴了雷达的原理和技术而发展起来的,而超声的发展又为电子学、光电子学、雷达技术的发展提供了超声延迟线、滤波器、卷积器、声光调制器等重要的体波和表面波器件。

但是,超声学仍是一门年轻的学科,其中存在着许多尚待深入研究的问题,对许多超声应用的机理还未彻底了解,况且实践还在不断地向超声学提出各种新的课题,而这些问题的不断提出和解决,都已表明了超声学是在不断向前发展。

本文来源:https://www.2haoxitong.net/k/doc/5311583d0b4c2e3f5727631f.html

《超声波的应用.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式