专题5 第2讲 综合大题部分(真题押题精练)

发布时间:   来源:文档文库   
字号:
专题5 数列
2 综合大题部分


1. (2018·高考全国卷ⅡSn为等差数列{an}的前n项和,已知a1=-7S3 15. (1{an}的通项公式; (2Sn,并求Sn的最小值.
解析:(1{an}的公差为d,由题意得3a13d=-15. a1=-7d2. 所以{an}的通项公式为ana1(n1d2n9. a1an(2(1Sn2·nn28n(n4216. 所以当n4时,Sn取得最小值,最小值为-16. 2(2017·高考全国卷Ⅱ已知等差数列{an}的前n项和为Sn等比数列{bn}的前n项和为Tna1=-1b11a2b22. (1a3b35,求{bn}的通项公式; (2T321,求S3. 解析:{an}的公差为d{bn}的公比为q an=-1(ndbnqn1. a2b22dq3. (1a3b352dq26.
d3d1联立①和②解得(舍去
q0q2.1




因此{bn}的通项公式为bn2n1. (2b11T321q2q200 解得q=-5q4. q=-5时,由①得d8,则S321. q4时,由①得d=-1,则S3=-6. 3(2018·高考全国卷Ⅲ在等比数列{an}中,a11a54a3. (1{an}的通项公式;
(2Sn{an}的前n项和.若Sm63,求m. 解析:(1{an}的公比为q,由题设得anqn1. 由已知得q44q2,解得q0(舍去q=-2q2. an(2n1an2n1. n12(2an(2n1,则Sn. 3Sm63(2m=-188,此方程没有正整数解. an2n1,则Sn2n1. Sm632m64,解得m6. 综上,m6. 4(2018·高考天津卷{an}是等差数列,其前n项和为Sn(nN*{bn}是等比数列,公比大于0,其前n项和为Tn(nN*.已知b11b3b22b4a3a5b5a42a6. (1SnTn
(2Sn(T1T2+…+Tnan4bn,求正整数n的值. 解析:(1设等比数列{bn}的公比为q(q>0 b11b3b22,可得q2q20. 因为q>0,可得q2,故bn2n1. 2


12nn所以Tn21. 12设等差数列{an}的公差为d.b4a3a5,可得a13d4. b5a42a6,可得3a113d16 从而a11d1,故ann nn1所以Sn2. (2(1,有
n2×1212nT1T2Tn(222nn2n1n2. 12Sn(T1T2Tnan4bn可得 nn1n1n12n2n2
2整理得n23n40,解得n=-1(舍去,或n4. 所以,n的值为4.
1. 已知首项为2的数列{an}的前n项和为SnSn13Sn2Sn1(n2nN* (1求数列{an}的通项公式;
n1(2bna,求数列{bn}的前n项和Tn. n解析:(1因为Sn13Sn2Sn1(n2 所以Sn1Sn2Sn2Sn1(n2 an12an(n2,所以an12n1
an2n,当n1时,也满足,故数列{an}的通项公式为an2n. n11(2因为bn2n(n1(2n
3


112131n所以Tn2×23×(24×(2(n1×(2



11213141n1n1T2×(3×(4×(n×((n1×(2n22222

1111111111①-②得2Tn2×2(22(23(2n(n1(2n12(21(22(23(1(n1(12n2n1 11[11n22](n1(1n12 112211(1n(n1(1222n1 3n322n1. 故数列{bn3n}的前n项和为Tn32n.
2.已知数列{an}满足a14a242a3+…+4n1ann4(nN*
(1求数列{an}的通项公式;
(2b4nann2n1,求数列{bnbn1}的前n项和Tn. 解析:(1n1时,a114. 因为a1an14a242a34n2an14nn4 所以a14a242a34n2an1n14(n2nN*

①-②,得4n1a1n4(n2nN* 所以a1n4n(n2nN*
4




11由于a14,故an4n(nN* (2(1bn1 2n12n14nan1111所以bnbn12(
2n12n32n12n31111111111nTn2×(35572×(3. 2n12n32n36n93.已知等差数列{an}的前n项和为SnnN*,且a23S525. (1求数列{an}的通项公式; (2若数列{bn}满足bn1,记数列{bn}的前n项和为Tn,证明:Tn<1. Sn·Sn1解析:(1设等差数列{an}的公差为d. 因为a23S525 ad31所以52a14d225所以an2n1. n12n12(2(1知,an2n1,所以Snn. 2所以bn111n. nn1n11
a11解得
d2
n2·n12所以Tnb1b2b3bn 11111(12(23(n
n111<1. n14.在数列{an}中,a15an14an3.bnlog4(an1nN*. (1求证:数列{bn}是等差数列,并求{bn}的通项公式;
5


(2记数列{bn}的前n项和为Sn,若不等式(1nkbn<2Snn4对所有的正奇n都成立,求实数k的取值范围.
解析:(1因为bn1log4(an11log4[4(an1]1log4(an11bnbn1bn1
所以数列{bn}是以b1log441为首项,1为公差的等差数列, 所以bn1(n1×1n. nn1(2(1bnn,则Sn2
4所以(1nkbn<2Snn4等价于(1nkn<n22n4,即(1nk<nn2. 44因为n为正奇数,所以原式变形为k>(nn2,则k>[(nn2]max. 4令函数f(x=-(xx2x>0 4x2x2x2f(xx2
x2所以当x(0,2时,f(x>0 x(2,+时,f(x<0
f(x(0,2上单调递增,在(2,+上单调递减,
19f(1=-7<f(3=-3
19f(nmax=-3(n为正奇数
1919所以k>3,即实数k的取值范围为(3,+
6


本文来源:https://www.2haoxitong.net/k/doc/18ba295c8ad63186bceb19e8b8f67c1cfbd6ee49.html

《专题5 第2讲 综合大题部分(真题押题精练).doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式