矩阵n次方的几种求法的归纳

发布时间:2018-12-05 05:55:39   来源:文档文库   
字号:

矩阵n次方的几种求法

1.利用定义法

称为AB的乘积,记为C=AB,则由定义可以看出矩阵AB的乘积C的第行第列的元素等于第一个矩阵A的第行与第二个矩阵B的第列的对应元素乘积之和,且由定义知:第一个矩阵的列数与第二个矩阵的行数要相

1:已知矩阵,求AB

解:设=,其中

由矩阵乘积的定义知:

将这些值代入矩阵中得:

=

则矩阵次方也可利用定义的方法来求解。

2.利用矩阵的分块来求解

这类方法主要是把一个大矩阵看成是由一些小矩阵组成,就如矩阵由数组成的一样在运算中将这些小矩阵当做数一样来处理,再由矩阵乘法的定义这些小矩阵的乘积所构成的矩阵。即设分解成一些小矩阵:

,其中小矩阵且,且小矩阵且;且;令=,其中小矩阵且,且;其中。这里我们应注意:矩阵列的分法必须与矩阵行的分法一

2:已知矩阵,求

解:将

,其中

由矩阵乘积法则知:

AB=

由矩阵加法和乘积法则

则矩阵次方的求解也可利用以上方法来求解。

3利用数学归纳法求解

这种方法与矩阵和数学归纳相结合,从而找出规律再求解,但是这种方法比较适合低阶且有规律的方阵方的运

3:已知A=,求

解:当

所以假设=

时成立,假设当时成立则当

由矩阵乘法定及三角函数知 =则假设成立。

所以=

4利用分拆法求解

这类方法主要是将一个矩阵分解成一个单位矩阵和另外一个矩阵之和再求,且另外这个矩阵的次方计算起来比较简

4:已知A=,求

解:,其中,矩阵为单位阵 =

时, =0

矩阵加法运算法则

=

5利用相似矩阵求解(利用对角矩阵来求)

定义:设矩阵为数域上两个级矩阵,如果可以找到数域级可逆,使得矩阵,就说。如果矩阵有一个可以化成对角矩阵则计算比较简便。而判断矩阵可对角化的条件

1)矩阵可对角化的必要条件是矩阵个不同的特征值

2)矩阵可对角化的充要条件是矩阵有个线性无关的特征向量

3)在复数域上矩阵没有重根

而求矩阵的特征值和特征向量的方法

1)求矩阵特征多项式在数域中的全部根,这些根是矩阵的全部特征值。把这些所求的特征值逐个的代入方程组中,对于每一个特征值,解方程组,求出一组基础解系,那么这个基础解系就是属于这个特征值的特征向量。

再利用判别法判断矩阵是否可对角化。

5:已知矩阵,

解:易知矩阵的特征多项式=

由行列式计算方法知

=

所以矩阵的特征值为

当特征值为解方程,由齐次线性方程组的计算方法知:的基础解系为=;所以矩阵A属于特征值1的全部特征向量为,0

当特征值为解方程,由齐次线性方程组的计算方法知:的基础解系为=;所以矩阵属于特征值的全部特征向量为,其中

当特征值为解方程,由齐次线性方程组的计算方法知:基础解系为=,所以矩阵属于特征值3的全部特征向量为,其中

则由矩阵可对角化的条件知:矩阵对角化且对角阵为

=,由求逆矩阵的方法知:

因为线性变换在不同基下所对应的矩阵是相似的知:

所以

,由矩阵的乘法运算法则知:

2)对方阵,设,对做初等变换,化成其中为上三角阵,则矩阵主对角线上元素乘积的的多项式的根即为的特征根。对矩阵的任一特征根,代入中,若中非零向量构成一满秩矩阵,则行向量所对应的中的行向量即为的特征向量;否则,继续施行初等行变换,使得中非零向量构成一满秩矩阵,则中零向量所对应的中的行向量即为的特征向

这类问题所涉及的定理是:对任意方阵的特征矩阵经过行变换,可化为上三角矩阵,且主对角线上元素乘积的多项式的根即为矩阵A的特征值

6:已知矩阵,求

解:

作初等行变换

由上述定理知:矩阵特征值为1(二重),4

2)判别法知:矩阵的特征向量为:

,由2)判别法知:矩阵A的特征向量为:

则由相似矩阵的条件知:矩阵与对角矩阵相似且对角矩阵为

则存在可逆使得

由求可逆阵的方法知:

知:

=

6利用若当形矩阵求解

这类方法主要是运用任何一个级复矩阵都相似一个若当形矩阵和利用相似矩阵的相关定理及化若当形矩阵的方

7:已知矩阵,求

解:,由求初等因子的方法知:

的初等因子为所以矩阵的若当标准形为:

存在可逆阵,使得,则

,其中为列向量

将矩阵代入

由齐次线性方程组:,即,则是齐次线性方程组的解且是线性无关的,则由齐次线性方程组:的基础解系。

有解线性无关由数学归纳法知:

由求可逆阵的方法知:

=

7.利用多项式求解

主要运用带余除法即:对于数域中任意两个多项式,其中0,一定有中的多项式存在使成立,其中=0,并且这样的是唯一

7.1特征多项式无重根

8:已知矩阵,求

解:设为矩阵A的特征多项式,则

由计算行列式的方法知:

由带余除法及辗转相除法则:设,其,所以将特征多项式的根代入中得:

解得

所以

由哈密顿凯莱定A是数域P上的一个nn矩阵,是矩阵A的特征多项式则

A代入中得:

由矩阵乘法的定义知:

所以由矩阵的加法运算法则知:

7.2特征多项式有重根

9:已知矩阵,求

解:设为矩阵的特征多项式,则

由行列式计算方法知

由带余除法及辗转相除法知:,其中,所以 将特征多项式的根代入中得:

因为12重根。

由定理:如果不可约多项式重因式(),则它的微商k-1重因式.1

则由导数定义及性质:对等号两边同时求导得:

则将1代入得:

解得:

由哈密顿凯莱定理知:

则将矩阵A代入中得:

由矩乘法运算法则知:

由矩阵的加法运算法则知:

8.总结

上述七种方法求解矩阵次方的乘积适用于求低阶矩阵的次方的乘积适用于求低阶矩阵次方的计算,而对于高阶矩阵的求解则比较困难。利用方块、拆项、数学归纳法和相似矩阵的方法求解适用于比较特殊的一些矩阵的求解;利用定义、若尔当形矩阵和多项式的方法对于普通的矩阵都适用,但利用定义的方法对于求矩阵次方的计算比较复杂;而利用多项式和若尔当形矩阵的方法有利于对所学知识的及时巩固、能加深对所知识的理解,而这两种方法提供了解这类问题行之有效的方法且容易掌握。

参考文献

[1] 同济大学应用数学系,高等代学,高等教育出版社,2008.

[2]钱吉林.高等代数解题精粹.北京:中央民族大学出,2002.

[3] 华东师范大学数学系.数学分析(第二版).高等教育出版社.

[4]刘嘉. 矩阵相似及其应用. 中国西部科技 ,2010,(26)

[5] 袁进. 特征值与特征向量. 高等数学研究 ,2004,(02)

[6] 张斌斌. 矩阵的特征值与特征向量的研究. 才智 ,2010,(08)

[7]施劲松,刘剑平. 矩阵特征值、特征向量的确定.大学数学,2003,(06). 19卷第6

[8] 汪庆丽. 用矩阵的初等变换求矩阵的特征值与特征向量. 岳阳师范学院学报(自然科学版) ,2001,(03)

[9]刘学鹏,王文省. 关于实对称矩阵的对角化问题[J]聊城师院学报(自然科学版) ,2003,(03)

[10]李佩贞. 矩阵的对角化与相似变换矩阵. 中山大学学报论丛 ,2000,(04)

[11]朱靖红,朱永生. 矩阵对角化的相关问题[J]辽宁师范大学学报(自然科学版) ,2005,(03) .

[12] 熊凯俊,李丽萍. 矩阵多项式特征值、特征向量的简单求法. 科协论坛(下半月) ,2008,(02) 1007-3973

本文来源:https://www.2haoxitong.net/k/doc/7daddd9a05a1b0717fd5360cba1aa81144318ff7.html

《矩阵n次方的几种求法的归纳.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式