数字电子技术(第三版)课后习题答案XT3

发布时间:2011-12-19 09:24:58   来源:文档文库   
字号:

第三章 布尔代数与逻辑函数化简

1.解:真值表如表3-1所示。将F=1的与项相或即得F的逻辑表达式。

2.

3. 对偶法则:将原式+→·,·→+1001并保持原来的优先级别,即得原函数对偶式。

反演法则;将原函数中+→·;·→+01,10;原变量→反变量;反变量→原变量,两个或两个以上变量的非号不变,并保持原来的优先级别,得原函数的反函数。

4.

5.解:

6.解:(1的卡诺图简化过程如图(a)所示。简化结果为,将其二次反求,用求反律运算一次即得与非式,其逻辑图如图(b)所示。

的卡诺图简化过程如图(a)所示。简化结果为,,其逻辑图如图(b)所示。

的卡诺图简化过程如图(a)所示。简化结果为,,其逻辑图如图(b)所示。

2)卡诺图简化过程如图(a)所示。简化结果为,其逻辑图如图(b)所示。

3)卡诺图简化过程如图(a)所示。简化结果为,其逻辑图如图(b)所示。

(4) 卡诺图简化过程如图(a)所示。简化结果为,其逻辑图如图(b)所示。

(5) 卡诺图简化过程如图(a)所示。简化结果为,其逻辑图如图(b)所示。

(6) 卡诺图简化过程如图(a)所示。简化结果为,其逻辑图如图(b)所示。

(7) 卡诺图简化过程如图(a)所示。简化结果为,其逻辑图如图(b)所示。

7. 利用最小项卡诺图化简为或与式的过程是:圈“0方格得反函数,求反一次,并利用求反律展开,即得或与式。对或与式两次取反,利用求反律展开一次,即得或非表达式。

(1)化简过程如图(a)所示。

圈“0得反函数

求反一次并展开得原函数的或与式

再二次求反,展开一次得或非式

或与及或非逻辑图分别如图(b)(c)所示。

(2)化简过程如图(a)所示。简化结果为

或与及或非逻辑图分别如图(b)(c)所示。

卡诺图化简过程如图(a)所示。化简结果为

或与及或非逻辑图分别如图(b)(c)所示。

2卡诺图化简过程如图(a)所示。化简结果为

或与及或非逻辑图分别如图(b)(c)所示。

3卡诺图化简过程如图(a)所示。化简结果为

4卡诺图化简过程如图(a)所示。化简结果为

或与及或非逻辑图分别如图(b)(c)所示。

(5) 卡诺图化简过程如图(a)所示。化简结果为

或与及或非逻辑图分别如图(b)(c)所示。

(6) 卡诺图化简过程如图(a)所示。化简结果为

或与及或非逻辑图分别如图(b)(c)所示。

(7) 卡诺图化简过程如图(a)所示。化简结果为

或与及或非逻辑图分别如图(b)(c)所示。

8. 与或非式的化简和或与式化简方法相同。圈“0得反函数,求反一次不展开即得与或非式的原函数。

(1)化简结果分别为:

5-(2)

5-(3)

5-(8)

其逻辑图分别如图(a)(b)(c)所示。

(2)(3)(4)化简结果分别为:

其逻辑图分别如图(a)(b)(c)所示。

(5)(6)(7)化简结果分别为

其逻辑图分别如图(a)(b)(c)所示。

9.解:含有无关项的逻辑函数化简时,对无关项的处理原则是:对化简有利则圈进卡诺圈,否则不圈。

(1)与或式、与非式化简过程如图(a)所示。化简结果为:

与或非式、或与式和或非式化简如图(b)所示。化简结果为:

(2)卡诺图化简过程如图所示。图(a)圈“1化简结果为:

(b)圈“0,化简结果为:

(3)卡诺图化简过程如图所示。

(a)"1",化简结果为;

(b)圈“0化简结果为;

(4)卡诺图化简过程如图所示。

化简结果为

10 . 当输入只有原变量时,为了少用非门,尽可能用综合反变量。化简时,可用代数法,也可用卡诺图法,即阻塞法。一般讲后者较为方便。阻塞法即每次圈卡诺圈时,均圈进全“1方格,以保证不出现反变量,这样可少用非门,然后再将多圈进的项扣除,即阻塞掉。

(1)卡诺图化简过程如图(a)所示。为保证m1m3m5不出现反变量,我们将m7圈进,使m1+m3+m5+m7=C,然后再将m7扣除,即,扣除后,就只剩m1m3m5,项。称为阻塞项。

其它依次类推,得化简后函数为

其逻辑图如图(b)所示。

(2)卡诺图化简过程如图(a)所示。第一个圈为m1+m3+m5+m7+m9+m11+m13+m15,显然多圈进了m11+m15,应将其扣除。为使阻塞项简单,阻塞项圈应尽可能的大,将m10+m11+m14+m15扣除,故第一个圈应用阻塞法的结果为

同样,第二个圈为m4+m5+m6+m7+m12+m13+m14+m15,多圈进了m14+m15也应将其扣除,此处也可用m10+m11+m14+m15作为阻塞项,故第二圈应用阻塞法的结果为

其逻辑图如图(b)所示。

(3)卡诺图化简过程如图(a)所示。

化简结果为

其逻辑图如图(b)所示。

(4) 卡诺图化简过程如图(a)所示。

化简结果为

其逻辑图如图(b)所示。

或者

化简结果为

其逻辑图如图所示。

11. 1)卡诺图化简过程如图(a)所示。

化简结果为

其逻辑图如图(b)所示。

2)卡诺图化简过程如图(a)所示。

化简结果为

其逻辑图如图(b)所示

3)卡诺图化简过程如图(a)所示。

化简结果为

其逻辑图如图(b)所示

4)卡诺图化简过程如图(a)所示。

化简结果为

其逻辑图如图(b)所示

12. 这一组题均为多元函数,多元函数的化简不追求单一函数的最简,而是要求整个系统最简。因此,化简时尽可能利用共用项。

(1)该题对每个函数而言,均为最简,不用再化简,需9个门才能完成。如从整体考虑,按图(a)所示化简。

其共用项关系由虚线表示,只需7个门即可完成,但对每一函数可能不为最简式。化简结果为

其逻辑图如图(b)所示

(2) 卡诺图简化过程如图(a)所示。化简结果为

其逻辑图如图(b)所示

(3) 卡诺图简化过程如图(a)所示。化简结果为

其逻辑图如图(b)所示

本文来源:https://www.2haoxitong.net/k/doc/75c2a71859eef8c75fbfb3a3.html

《数字电子技术(第三版)课后习题答案XT3.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式