费希尔判别法理论

发布时间:2018-06-30 09:01:02   来源:文档文库   
字号:

费希尔判别

费希尔判别(或称典型判别)的基本思想投影(降维)向量少数几个线性组合(称为费希尔判别函数或典型变量)(一般明显小于来代替原始的变量以达到降维的目的,并根据这判别函数样品的归属做出判别或将各组分离。成功降维将使样品的归类或组的分离更为方便和有效,并且可以对前三个判别函数作图,从直观的几何图像上区别各组。

降维的过程中难免会有部分有用信息的损失,但只要使用的方法得当,我们可以最大限度地减少这种损失,从而保留尽可能多的有用信息,即关于能够反应组之间差异的信息。为便于理解,我们以下用一个简单的二维例子来加以说明

图投影到某个方向再判别

如图所示两个组的所有样品都测量了两个变量将所有(画于直角坐标系上,一组的样品点用×表示,另一组的样品点用表示。假定我们希望将二维空间的点投影到某个一维空间,即一条直线上,然后再对两组进行判别,则投影到不同的直线上判别的效果一般是不同的。可见,如果两组的点都投影到直线则这两的投影点在该直线上的分布几乎无任何差异,他们完全混合在一起,我们无法这两组区别开来,这样的降维把反应两组间差异的信息都给损失了,显然是不可取的。事实上最好的投影是投影直线,因为它把两组的投影点很清楚地区分了开来,这种降维把有关两组差异的信息很好保留了下来,几乎没有任何损失,如此就完全可以在一维的直线上作判别分析。

我们现考虑在数据向量投影到某个具有最佳方向的,即投影到的点能最大限度地显现出各组之间的差异

观测值为将它们共同投影到某一常数向量,得到的投影点可分别对应线性组合。这样,所有的观测值就简化为一维观测值。下面我们表示均值,表示所有组总均值,即

式中

对于任一用来投影的我们需要给出一个能反映组之间分离程度的度量。比较图的上、下半图,上半图三组均值之间的差异程度与下半图是相同的,前者组之间的分离程度却明显高于后者,原因就在于前者的组变差要小于后者,后者组之间有较多重叠。因此可以考虑将组之间的分离程度度量为相对其组内变差的组间变差。在以下的讨论中,我们需假定各组的协方差矩阵相同,即

图三组之间的分离程度

组间平方和

式中组间平方和及叉积和矩阵。组内平方和

式中组内平方和及叉积和矩阵。

可用来度量组之间分离程度的一个量是

我们应选择这样的,使得达到最大。由于任意非零常数代替上式中的保持不变,故考虑对加以约束。我们希望判别函数具有单位方差,即但因未知,于是用其联合无偏估计替代,所以约束条件实际应为,即判别函数的联合样本方差为1

全部非零特征值依次为这里且有

5.4.2

(通常情况下上式等号成立)相应的特征向量依次记为(标准化1.8.5知,当达到最大值所以,选择投影能使各组的投影点最大限度地分离,称费希尔第一线性判别函数,简称第一判别函数。在许多情况下如组数大的,或者原始的数据向量维数大的),仅仅使用第一判别函数也许不够,因为仅在这一个投影方向上组之间的差异可能还不够清晰,各组未能很好分开这时我们应考虑建立第二线性组合为使降维最具效率,应要求(在线性关系的意义上)不重复的信息,即

代替未知的,于是我们在约束条件

寻找使得达到最大。按1.8.6,当达到最大值判别函数。如不够,可建立第三判别函数依次类推。一般地我们要求第线性组合不重复判别函数中的信息,即

代替上式变为

我们希望在约束条件)下寻找使得达到最大。由1.8.6知,当达到最大值判别函数,

附:1.85-1.86

对称矩阵,正定矩阵,特征值,相应的一组特征向量满足

综上所述,费希尔判别函数具有这样一些特点:(1判别函数具有单位(联合样本方差;(2各判别函数彼此之间不相关(确切地说,是彼此之间的联合样本协方差为零)3判别函数方向并不正交,但作图时仍将它们画成直角坐标系,虽有些变形,但通常并不严重。

5.4.2可知,组数只有一个判别函数,最多只有两个判别函数。这直观上也不难理解,(不重合的)两个重心组均值点)可在一维直线上有最大分离,不在一直线上的)三个组重心也可在(二维平面上有最大分开。一般,由全部空间可最大限度地分离组重心。

表明了第判别函数分离各组的贡献大小,所有判别函数中的贡献率为

而前判别函数累计贡献率为

表明了代表进行判别的能力。在实际应用中,通常我们并不使用所有判别函数,除非很小,因为费希尔判别法的基本思想就是要降维如果个判别函数的累计贡献率已达到了一个较高的比例(75%~95%则就采用判别函数进行判别。

确定了需使用的判别函数之后,可制定相应的判别规则。由于判别函数都具有单位方差且彼此不相关,故此时的马氏距离等同于欧式距离。我们采用距离判别法,依据(判别新样品归属离它最近的那一组,即判别规则为

5.4.6

其中判别函数在组样本均值平方欧式距离,5.4.6也可表达为

如果只使用一个判别函数进行判别(则(5.4.6可简化为

5.4.7

式中分别是(5.4.6中的

有时我们也使用中心的费希尔判别函数,

式中组的总均值,仍使用(5.4.6进行判别。

5.4.1(有用结论)组数的费希尔判别。

由于

组间矩阵

假设组内矩阵可逆的(必须则有一中的性质(2)知

有唯一的非零特征值

这是一个正数(因为相应的特征向量,它应满足

于是

易见满足上述方程,这里联合协方差矩阵。为此费希尔判别函数为

5.4.7,判别规则

其中注意到因此上述判别规则等价于

也可以表达为

正为(5.2.6

上例表明,对于两组的判别,费希尔判别等价于协方差矩阵相等的距离判别对两个正态组也等价于协方差相等且先验概率和误判代价也均相同的贝叶斯判别

使用的判别函数个数,可将样品的两个判别函数得分画成平面直角坐标系上的散点图,用目测法对新样品的归属进行判别或对来自各组样品的分离情况及结构进行观测评估。当,可利用SAS的交互式数据分析菜单系统,让样本中来自不同组的样品点呈现不同颜色(或不同形状)区分各组,然后作(三维旋转图从多角度来辨别新样品的归属或观测评估各组之间的分离效果,但其目测效果一般明显不如清楚。能够利用降维后生成的图形用目测法进行判别是费希尔判别的最重要应用,图中常常能清晰地展示出(通过计算未必能得到的)丰富的信息如发现构成各组的结构、离群样品点和数据中的其他异常情况

附:回代判别

为考察上述判别准则是否优良,采用以训练样本为基础的回代估计法计算误判。来自总体容量训练样本其中,,以所有的训练样本作为新样,依次代入建立的判别函数中,并且利用判别准则进行判别,该过程称为回判。用表示将属于总体样本误判为总体个数,设总的误判个数为则误判率回代估计为

本文来源:https://www.2haoxitong.net/k/doc/6d23d035b14e852459fb57d6.html

《费希尔判别法理论.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式