三相电流不平衡的原因及危害

发布时间:2013-02-05 06:11:44   来源:文档文库   
字号:

三相电流不平衡的原因及危害

1 三相负荷不平衡的原因

低压电网三相负荷失衡有以下数种原因:

1)低压电网三相负荷不平衡要增加损耗,虽然是早已被提出来了的。但在农网改造前,由于农村低压电网不在电业部门的必管范围,设备线路状况极差,线损很高,收不够上缴电费就涨电价,即线损水平虽高但降损的压力不大。农村照明等单相负荷很小,只占总用电负荷的520%左右,故虽进行过低压整改,多是把配电变压器移到负荷中心、改造低压线路、整改户内线路等。三相负荷不平衡由于是较次要的因素,没有也不可能引起人们足够注意,故实践很少,亦不可能提出调平三相负荷的具体方法。

2 农网改造由于规模大、任务重、时间紧,不可能面面俱到(如规划调平三相负荷);加之改造资金有限,为了降低费用,架设了一定数量的单相两线线路,尤其是低压分支线路中,单相两线线路占一定比例;还有在下户线接火施工中,一些施工人员素质低,没有三相负荷平衡的概念,施工中或随意接单相负荷,或为了不接成380V,把单相负荷都接到中间两根线上。这在一定程度上加重了三相不平衡度。

3 运行管理中,农村低压线路虽多为三相四线,但很多没有注意到把单相负荷均衡的分配到三相上,也不知道该怎样做才能均衡,造成某相或某两相负荷过多。更有甚者,有些地方供电所部署对于只有单相负荷且量值较小的三相四线线路,停用两根相线,只用单相两线供电,加重了三相不平衡度。

4 有的各相负荷看上去比较接近,各相电流也较相近,但中性线电流却很大,甚至超过最大相电流,这是因三相负荷的性质不同所引起的。

如某三相四线供电线路,测得相电压UA=UB=UC=220VIA=IB=4AIC=3.2AIN=4.2A

为了验证IN的值,测得各相负荷的相位|ΦA=ΦB=40°,ΦC=0°,则ZAZB中必有一相为感性,一相为容性。设ZA 为感性, ZB为容性,向量图如图1所示。



IAIB=2cos20°IA=7.5A

IN =IAIBIC=4.3A),理论计算和仪表测量结果基本吻合,说明中性线电流大确因三相负荷的性质不同所引起。

5 近年来,农村经济飞速发展,农民生活迅速提高,尤其是农网改造完成及同网同价实施后,农村家庭除照明电器增多外,大量的中、高档、大功率的家用电器进入寻常百姓家,例如电饭煲、电水壶、电炒锅、电热水器、电取暖器、小水泵等,单台容量大多数在8002000kW,都是采用单相(220V)电源,单相负荷激增;而另一方面,随着工业的发展,农村方便食品(如方便面、挂面)销售量增多,农户加工馒头、面皮、米皮出售等新生事物纷纷涌现,农副业加工量减少,农村单相负荷已成为电力负荷的主要方面。据了解,现在一般农村单相负荷已占总负荷的70%以上,富裕地方达到90%以上,经济较差的农村也占到5060%。在单相负荷用电量极大增长的情况下,若不注意三相平衡,可能使低压电网的三相不平衡度很大,电网技术状况很差。

三相负荷不平衡的危害

3.1  对配电变压器的影响

1)三相负荷不平衡将增加变压器的损耗:

变压器的损耗包括空载损耗和负荷损耗。正常情况下变压器运行电压基本不变,即空载损耗是一个恒量。而负荷损耗则随变压器运行负荷的变化而变化,且与负荷电流的平方成正比。当三相负荷不平衡运行时,变压器的负荷损耗可看成三只单相变压器的负荷损耗之和。

从数学定理中我们知道:假设abc 3个数都大于或等于零,那么a+b+c33abc 。

a=b=c时,代数和a+b+c取得最小值:a+b+c33abc 。

因此我们可以假设变压器的三相损耗分别为:QaIa2 RQb= Ib2 R Qc =Ic2 R,式中IaIbIc分别为变压器二次负荷相电流,R为变压器的相电阻。则变压器的损耗表达式如下:

Qa+Qb+Qc33[(Ia2 R)(Ib2 R)(Ic2 R)]

由此可知,变压器的在负荷不变的情况下,当Ia=Ib=Ic时,即三相负荷达到平衡时,变压器的损耗最小。

则变压器损耗:

当变压器三相平衡运行时,即Ia=Ib=Ic=I时,QaQbQc=3I2R

当变压器运行在最大不平衡时,即Ia=3IIb=Ic0时,Qa=(3I)2R=9I2R=3(3I2R)

即最大不平衡时的变损是平衡时的3倍。

2)三相负荷不平衡可能造成烧毁变压器的严重后果:

上述不平衡时重负荷相电流过大(增为3倍),超载过多,可能造成绕组和变压器油的过热。绕组过热,绝缘老化加快;变压器油过热,引起油质劣化,迅速降低变压器的绝缘性能,减少变压器寿命(温度每升高8℃,使用年限将减少一半),甚至烧毁绕组。

3)三相负荷不平衡运行会造成变压器零序电流过大,局部金属件温升增高:

在三相负荷不平衡运行下的变压器,必然会产生零序电流,而变压器内部零序电流的存在,会在铁芯中产生零序磁通,这些零序磁通就会在变压器的油箱壁或其他金属构件中构成回路。但配电变压器设计时不考虑这些金属构件为导磁部件,则由此引起的磁滞和涡流损耗使这些部件发热,致使变压器局部金属件温度异常升高,严重时将导致变压器运行事故。

3.2  对高压线路的影响

1)增加高压线路损耗:

    低压侧三相负荷平衡时,610k V高压侧也平衡,设高压线路每相的电流为I,其功率损耗为:                     ΔP1 = 3I2R

低压电网三相负荷不平衡将反映到高压侧,在最大不平衡时,高压对应相为1.5I,另外两相都为0.75 I,功率损耗为:

ΔP2 = 20.75I2R+(1.5I2R = 3.375I2R =1.1253I2R);

 即高压线路上电能损耗增加12.5%。

2)增加高压线路跳闸次数、降低开关设备使用寿命:

我们知道高压线路过流故障占相当比例,其原因是电流过大。低压电网三相负荷不平衡可能引起高压某相电流过大,从而引起高压线路过流跳闸停电,引发大面积停电事故,同时变电站的开关设备频繁跳闸将降低使用寿命。

3.3  对配电屏和低压线路的影响

  1)三相负荷不平衡将增加线路损耗:

   三相四线制供电线路,把负荷平均分配到三相上,设每相的电流为I,中性线电流为零,其功率损耗为:                     ΔP1 = 3I2R

在最大不平衡时,即某相为3I,另外两相为零,中性线电流也为3I,功率损耗为:

ΔP2 = 23I)2R = 18I2R = 63I2R)

 即最大不平衡时的电能损耗是平衡时的6倍,换句话说,若最大不平衡时每月损失1200 kWh,则平衡时只损失200 kWh,由此可知调整三相负荷的降损潜力。

2)三相负荷不平衡可能造成烧断线路、烧毁开关设备的严重后果:

上述不平衡时重负荷相电流过大(增为3倍),超载过多。由于发热量Q0.24I2Rt,电流增为3倍,则发热量增为9倍,可能造成该相导线温度直线上升,以致烧断。且由于中性线导线截面一般应是相线截面的50%,但在选择时,有的往往偏小,加上接头质量不好,使导线电阻增大。中性线烧断的几率更高。

同理在配电屏上,造成开关重负荷相烧坏、接触器重负荷相烧坏,因而整机损坏等严重后果。

3.4  对供电企业的影响

供电企业直管到户,低压电网损耗大,将降低供电企业的经济效益,甚至造成供电企业亏损经营。农电工承包台区线损,线损高农电工奖金被扣发,甚至连工资也得不到,必然影响农电工情绪,轻则工作消极,重则为了得到钱违法犯罪。

变压器烧毁、线路烧断、开关设备烧坏,一方面增大供电企业的供电成本,另一方面停电检修、购货更换造成长时间停电,少供电量,既降低供电企业的经济效益,又影响供电企业的声誉。

3.5  对用户的影响

三相负荷不平衡,一相或两相畸重,必将增大线路中的电压降,降低电能质量,影响用户的电器使用。

变压器烧毁、线路烧断、开关设备烧坏,影响用户供电,轻则带来不便,重则造成较大的经济损失,如停电造成养殖的动植物死亡,或不能按合同供货被惩罚等。中性线烧断还可能造成用户大量低压电器被烧的事故。

本文来源:https://www.2haoxitong.net/k/doc/60d7542058fb770bf78a559b.html

《三相电流不平衡的原因及危害.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式