遗传算法

发布时间:2018-07-01 02:08:58   来源:文档文库   
字号:

遗传算法

一、 概念

遗传算法(Genetic Algorithm)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。

遗传算法是从代表问题可能潜在的解集的一个种群population)开始的,而一个种群则由经过基因gene)编码的一定数目的个体(individual)组成。每个个体实际上是染色体(chromosome)带有特征的实体。染色体作为遗传物质的主要载体,即多个基因的集合,其内部表现(即基因型)是某种基因组合,它决定了个体的形状的外部表现,如黑头发的特征是由染色体中控制这一特征的某种基因组合决定的。因此,在一开始需要实现从表现型到基因型的映射编码工作。由于仿照基因编码的工作很复杂,我们往往进行简化,如二进制编码,初代种群产生之后,按照适者生存和优胜劣汰的原理,逐代(generation)演化产生出越来越好的近似解,在每一代,根据问题域中个体的适应度fitness)大小选择(selection)个体,并借助于自然遗传学的遗传算子genetic operators)进行组合交叉(crossover)和变异(mutation),产生出代表新的解集的种群。这个过程将导致种群像自然进化一样的后生代种群比前代更加适应于环境,末代种群中的最优个体经过解码decoding),可以作为问题近似最优解。

二、 遗传算法的特点

遗传算法是解决搜索问题的一种通用算法,对于各种通用问题都可以使用。搜索算法的共同特征为:

 首先组成一组候选解

 依据某些适应性条件测算这些候选解的适应度

 根据适应度保留某些候选解,放弃其他候选解

 对保留的候选解进行某些操作,生成新的候选解。

在遗传算法中,上述几个特征以一种特殊的方式组合在一起:基于染色体群的并行搜索,带有猜测性质的选择操作、交换操作和突变操作。这种特殊的组合方式将遗传算法与其它搜索算法区别开来。

遗传算法还具有以下几方面的特点

(1)遗传算法从问题解的串集开始搜索,而不是从单个解开始。这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从串集开始搜索,覆盖面大,利于全局择优。

(2)遗传算法同时处理群体中的多个个体,即对搜索空间中的多个解进行评估,减少了陷入局部最优解的风险,同时算法本身易于实现并行化。

(3)遗传算法基本上不用搜索空间的知识或其它辅助信息,而仅用适应度函数值来评估个体,在此基础上进行遗传操作适应度函数不仅不受连续可微的约束,而且其定义域可以任意设定。这一特点使得遗传算法的应用范围大大扩展。

(4)遗传算法不是采用确定性规则,而是采用概率的变迁规则来指导他的搜索方向。

(5)具有自组织、自适应和自学习性。遗传算法利用进化过程获得的信息自行组织搜索时,适应度大的个体具有较高的生存概率,并获得更适应环境基因结构

(6)此外,算法本身也可以采用动态自适应技术,在进化过程中自动调整算法控制参数和编码精度,比如使用模糊自适应法

三、算法原理

遗传操作是模拟生物基因遗传的做法。在遗传算法中,通过编码组成初始群体后,遗传操作的任务就是对群体的个体按照它们对环境适应度(适应度评估)施加一定的操作,从而实现优胜劣汰的进化过程。从优化搜索的角度而言,遗传操作可使问题的解,一代又一代地优化,并逼近最优解。

遗传操作包括以下三个基本遗传算子(genetic operator):选择(selection);交叉(crossover)变异(mutation)。这三个遗传算子有如下特点:

个体遗传算子的操作都是在随机扰动情况下进行的。因此,群体中个体向最优解迁移的规则是随机的。需要强调的是,这种随机化操作和传统的随机搜索方法是有区别的。遗传操作进行的高效有向的搜索而不是如一般随机搜索方法所进行的无向搜索。

遗传操作的效果和上述三个遗传算子所取的操作概率,编码方法,群体大小,初始群体以及适应度函数的设定密切相关。

选择

从群体中选择优胜的个体,淘汰劣质个体的操作叫选择。选择算子有时又称为再生算子(reproduction operator)。选择的目的是把优化的个体(或解)直接遗传到下一代或通过配对交叉产生新的个体再遗传到下一代。选择操作是建立在群体中个体的适应度评估基础上的,目前常用的选择算子有以下几种:适应度比例方法、随机遍历抽样法、局部选择法。

其中轮盘赌选择法 roulette wheel selection)是最简单也是最常用的选择方法。在该方法中,各个个体的选择概率和其适应度值成比例。设群体大小为n,其中个体i适应度为,则i 被选择的概率,为遗传算法

显然,概率反映了个体i适应度在整个群体的个体适应度总和中所占的比例。个体适应度越大。其被选择的概率就越高、反之亦然。计算出群体中各个个体的选择概率后,为了选择交配个体,需要进行多轮选择。每一轮产生一个[01]之间均匀随机数,将该随机数作为选择指针来确定被选个体。个体被选后,可随机地组成交配对,以供后面的交叉操作。

交叉

在自然界生物进化过程中起核心作用的是生物遗传基因的重组(加上变异)。同样,遗传算法中起核心作用的是遗传操作的交叉算子。所谓交叉是指把两个父代个体的部分结构加以替换重组而生成新个体的操作。通过交叉,遗传算法的搜索能力得以飞跃提高。

交叉算子根据交叉率将种群中的两个个体随机地交换某些基因,能够产生新的基因组合,期望将有益基因组合在一起。根据编码表示方法的不同,可以有以下的算法:

a)实值重组(real valued recombination

1)离散重组(discrete recombination

2)中间重组(intermediate recombination

3)线性重组(linear recombination

4)扩展线性重组(extended linear recombination)。

b)二进制交叉(binary valued crossover

1)单点交叉(single-point crossover

2)多点交叉(multiple-point crossover

3)均匀交叉(uniform crossover

4)洗牌交叉(shuffle crossover

5)缩小代理交叉(crossover with reduced surrogate)。

最常用的交叉算子为单点交叉(one-point crossover)。具体操作是:在个体串中随机设定一个交叉点,实行交叉时,该点前或后的两个个体的部分结构进行互换,并生成两个新个体。下面给出了单点交叉的一个例子:

个体A1 0 0 1 ↑1 1 1 → 1 0 0 1 0 0 0 新个体

个体B0 0 1 1 ↑0 0 0 → 0 0 1 1 1 1 1 新个体

变异

变异算子的基本内容是对群体中的个体串的某些基因座上的基因值作变动。依据个体编码表示方法的不同,可以有以下的算法:

a)实值变异

b)二进制变异。

一般来说,变异算子操作的基本步骤如下:

a)对群中所有个体以事先设定的变异概率判断是否进行变异

b)对进行变异的个体随机选择变异位进行变异。

遗传算法引入变异的目的有两个:一是使遗传算法具有局部的随机搜索能力。当遗传算法通过交叉算子已接近最优解邻域时,利用变异算子的这种局部随机搜索能力可以加速向最优解收敛。显然,此种情况下的变异概率应取较小值,否则接近最优解的积木块会因变异而遭到破坏。二是使遗传算法可维持群体多样性,以防止出现未成熟收敛现象。此时收敛概率应取较大值。

遗传算法中,交叉算子因其全局搜索能力而作为主要算子,变异算子因其局部搜索能力而作为辅助算子。遗传算法通过交叉和变异这对相互配合又相互竞争的操作而使其具备兼顾全局和局部的均衡搜索能力。所谓相互配合.是指当群体在进化中陷于搜索空间中某个超平面而仅靠交叉不能摆脱时,通过变异操作可有助于这种摆脱。所谓相互竞争,是指当通过交叉已形成所期望的积木块时,变异操作有可能破坏这些积木块。如何有效地配合使用交叉和变异操作,是目前遗传算法的一个重要研究内容。

基本变异算子是指对群体中的个体码串随机挑选一个或多个基因座并对这些基因座的基因值做变动(以变异概率P.做变动)(01)二值码串中的基本变异操作如下:

基因位下方标有*号的基因发生变异。

变异率的选取一般受种群大小、染色体长度等因素的影响,通常选取很小的值,一般取0.0010.1

终止条件

当最优个体的适应度达到给定的阈值,或者最优个体的适应度和群体适应度不再上升时,或者迭代次数达到预设的代数时,算法终止。预设的代数一般设置为100-500代。

不足之处

(1)编码不规范及编码存在表示的不准确性。

(2)单一的遗传算法编码不能全面地将优化问题的约束表示出来。考虑约束的一个方法就是对不可行解采用阈值,这样,计算的时间必然增加。[4] 

(3)遗传算法通常的效率比其他传统的优化方法低。

(4)遗传算法容易过早收敛。

(5)遗传算法对算法的精度、可行度、计算复杂性等方面,还没有有效的定量分析方法。

四、 遗传算法的应用

由于遗传算法的整体搜索策略和优化搜索方法在计算时不依赖于梯度信息或其它辅助知识,而只需要影响搜索方向的目标函数和相应的适应度函数,所以遗传算法提供了一种求解复杂系统问题的通用框架,它不依赖于问题的具体领域,对问题的种类有很强的鲁棒性,所以广泛应用于许多科学,下面我们将介绍遗传算法的一些主要应用领域:

函数优化

函数优化是遗传算法的经典应用领域,也是遗传算法进行性能评价的常用算例,许多人构造出了各种各样复杂形式的测试函数:连续函数和离散函数、凸函数凹函数、低维函数和高维函数、单峰函数和多峰函数等。对于一些非线性、多模型、多目标的函数优化问题,用其它优化方法较难求解,而遗传算法可以方便的得到较好的结果。

组合优化

随着问题规模的增大,组合优化问题的搜索空间也急剧增大,有时在目前的计算上用枚举法很难求出最优解。对这类复杂的问题,人们已经意识到应把主要精力放在寻求满意解上,而遗传算法是寻求这种满意解的最佳工具之一。实践证明,遗传算法对于组合优化中的NP问题非常有效。例如遗传算法已经在求解旅行商问题 背包问题装箱问题、图形划分问题等方面得到成功的应用。

此外,GA也在生产调度问题、自动控制、机器人学、图象处理人工生命、遗传编码和机器学习等方面获得了广泛的运用。

车间调度

车间调度问题是一个典型的NP-Hard问题,遗传算法作为一种经典的智能算法广泛用于车间调度中,很多学者都致力于用遗传算法解决车间调度问题,现今也取得了十分丰硕的成果。从最初的传统车间调度(JSP)问题到柔性作业车间调度问题(FJSP),遗传算法都有优异的表现,在很多算例中都得到了最优或近优解。

本文来源:https://www.2haoxitong.net/k/doc/597285dea26925c52dc5bf75.html

《遗传算法.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式